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a b s t r a c t

Sinusoid signals with multiple frequencies appear in various systems and their frequencies may carry
some important features. Frequency estimation from their discrete samples is one of the fundamental
problems and many frequency estimators have been proposed for uniform sampling setting. In this
paper, frequency estimators based on adaptive notch filtering are proposed for nonuniform sampling
setting. We observe that some dynamic systems associated with adaptive notch filters can be solved in
nonuniformly sampled time steps with high accuracy. This leads us to propose a digital adaptive notch
filtering method to estimate frequency of a sinusoidal signal with single frequency from its nonuniform
samples. The proposed method exhibits convergent and robust frequency estimation in the presence of
random sampling noises, and its variance is comparable to the Cramer–Rao lower bound in the presence
of additive white noise. The above method designed for single frequency estimation could track abrupt
single frequency change of an input signal, but it is not applicable directly for multiple frequency esti-
mation. Our simulations show that the proposed estimators have robust performance for sinusoidal
signals with multiple distinct frequencies, and they can be used to separate two very close frequencies of
an input signal in a highly noisy sampling environment.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider a mixture of sinusoidal signals, whose kth component
has amplitude Ak, frequency θk and phase ϕ ≤ ≤k K, 1k ,

∑ θ ϕ( ) = ( + )
( )=

y t A tsin .
1.1k

K

k k k
1

Such sinusoidal signals are encountered in active noise and vi-
bration control, wireless communications, audio, radar and sonar
signal processing [1–4]. In telecommunication systems, the fre-
quencies θ ≤ ≤k K, 1k , contain carrier's phase information neces-
sary for synchronization of demodulators or other components of
a receiver system.

The estimation problem of frequencies θ ≤ ≤k K, 1k , of the
signal y is a fundamental problem in systems theory with many
applications. It has been intensively studied in signal processing,
instrumentation and measurements, and control theory. Many
frequency estimators have been proposed, including adaptive
notch filtering, time frequency representation, phase locked loop,
eigensubspace tracking, extended Kalman filtering, internal model

method, etc., see [5–8] and references therein.
Most of existing estimators are derived for uniformly sampled

data ( Δ ) ≥y n T n, 0, with uniform sampling frequency ΔT1/ , and
often only for a single frequency, i.e., K¼1. In this paper, we con-
sider multiple frequency estimation problem of the signal y from
its nonuniform samples,

= ( ) + ≥ ( )z y T w n, 0, 1.2n n n

corrupted by additive noises wn, where ≥T n, 0n , are sampling
times.

Nonuniform sampling arises in many applications, such as
computer graphics, frequency scanning interferometry, magnetic
resonance imaging, computer tomography scans and Radon ima-
ging [9–14]. Uniform sampling is well studied and it has been
widely used in engineering applications. However in some appli-
cations, nonuniform sampling is necessary and it has better per-
formance. For instance, in antialiasing in computer graphics [15],
better results can be obtained with random sampling instead of
uniform sampling. The sampling operation could be costly, and a
low number of samples (but not necessarily uniform) is more
desirable. For instance, in frequency scanning interferometry, the
sampling effort is measured by the acquisition time at a given
point, and the optimal sampling scheme is usually nonuniform
[16]. Nonuniformly sampled data are harder to analyze and the
related methods, even for a “simple” task of obtaining the discrete
nonuniform Fourier transform, are much more difficult and often

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.05.024
0165-1684/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: syedalamabbas@knights.ucf.edu,

syedalamabbas@gmail.com (A.A. Syed), qiyu.sun@ucf.edu (Q. Sun),
foroosh@eecs.ucf.edu (H. Foroosh).

Signal Processing 129 (2016) 67–81

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.05.024
http://dx.doi.org/10.1016/j.sigpro.2016.05.024
http://dx.doi.org/10.1016/j.sigpro.2016.05.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.05.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.05.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.05.024&domain=pdf
mailto:syedalamabbas@knights.ucf.edu
mailto:syedalamabbas@gmail.com
mailto:qiyu.sun@ucf.edu
mailto:foroosh@eecs.ucf.edu
http://dx.doi.org/10.1016/j.sigpro.2016.05.024


iterative [9,17]. Several statistical frequency estimators (based on
maximum likelihood estimation and filter banks) from non-
uniformly sampled data have been proposed in the literature
[11,18–23]. For nonuniform sampling problems in signal proces-
sing, the reader may refer to [24–26].

In many applications of signal processing, it is desirable to
eliminate or extract sine waves from observed data or to estimate
their unknown frequencies. Since the frequencies often vary with
time, it is useful to apply adaptive notch filters (ANFs) that adapt
their notch frequencies as a function of the observed time series,
see [27,28] and references therein. The ANF method is one of the
most suitable techniques to separate sinusoidal components of
unknown frequencies buried in noise, and/or retrieve such peri-
odic components [29–35]. It is robust in the presence of sampling
noise and it is capable of changing the notch frequency accord-
ingly. Various architectures have been proposed for the construc-
tion of adaptive notch filters, see for instance [1,36–41].

Frequency estimation problem using ANF is modeled as a
nonlinear system identification of a dynamic system either in
continuous time (CT) (e.g. [1]) or in discrete time (DT) (e.g. [29]).
The CT model systems are native to the physical world, they have a
built-in capability to cope with the nonuniformly sampled signal,
and they offer certain advantages over purely DT model systems
[45,46]. Compared to the DT model, direct estimation of CT models
is usually stable, accurate and free from undesirable sensitivity
problems, particularly at high sampling rates. The frequency esti-
mator developed in this paper is based on ANFs, which are gov-
erned by some CT dynamic systems [29–35,42–44]. We mainly
focus on a particular ANF governed by the following dynamic
system:

ξθ θ θ
θ γ θ ξθ

=
= − − +

= − ( − ) ( )

⎧
⎨⎪

⎩⎪

Dx x

Dx x x y

D y x x

2

2 , 1.3

1 2

2 2
2

1
2

2
2 1

where D represents the derivative with respect to time t, θx x, ,1 2

are states of the system, y is the excitation sinusoidal input with
single frequency θ0 (i.e., K¼1 in (1.1)), ξ is the notch depth, and γ is
the adaptation speed. The above system of nonlinear ordinary
differential equations (ODE) has good noise rejection capability. It
was proposed by Regalia in [1] as a DT filter, it was later adapted
by Bodson and Douglas [42] for a CT system, and finally a modified
version was proposed by Hsu et al. [29]. We have chosen this
dynamic system due to its superior performance compared to the
other systems that can be used with a similar discretization pro-
cedure, see Section 2.5 for performance comparison.

The main difficulty in handling CT dynamic systems directly is
the problem of evaluating derivatives of the input signal (with
unknown parameters) from its nonuniform samples numerically,
the numerical differentiation process in a highly noisy environ-
ment is usually unstable and impractical [47–49]. In this paper, we
propose a Taylor-like approximation of the dynamic system (1.3)
that is robust to noise and achieves high accuracy. Based on the
above approximation, we introduce an ANF method (2.13) to es-
timate the frequency of a sinusoidal signal from its nonuniform
samples. The proposed discrete ANF method reconciles the merits
of CT models while restricting itself to operate directly on the DT
data.

This paper is organized as follows. Section 2 discusses a Taylor-
like approximation technique to solve the system (1.3) and a fre-
quency estimation of the unknown input signal with single fre-
quency. We propose the frequency estimator (2.13), perform the
local stability analysis, and study its convergence, noise char-
acteristics, statistical properties, and comparison to the conven-
tional ODE solver for the dynamic systems associated with the ANF
methods. We also perform a comparison of our method with a

state of the art discrete ANF [40]. Section 3 describes extensions of
the single frequency estimator (2.13) to multiple frequency esti-
mations with two configurations, the cascade ANF method and the
prefiltering ANF method. The two proposed multiple frequency
estimators have robust performance for sinusoidal signals with
multiple distinct frequencies or related harmonic frequencies.
Most of the known frequency estimators have poor performance
when input signal has two very close frequencies in a highly noisy
environment, a pathological case where the estimation error is
related to both the difference in the frequency and the noise level,
see [50] and references therein. Our simulation indicates that the
cascade ANF method has sound performance even in the separa-
tion of very close frequencies of the input signal in a highly noisy
sampling environment. We close the paper with concluding re-
marks in Section 4.

Notation: We use Euler notation for expressing derivatives, Dn

instead of Dn
t to denote the nth derivative with respect to time t.

2. Single frequency estimation

Consider a sinusoidal input,

θ ϕ( ) = ( + ) ( )y t A tsin , 2.10

where θ ϕA, ,0 are its amplitude, frequency, and phase respectively.
In the first subsection, we propose a discrete ANF method to es-
timate frequency θ0 of the sinusoid signal y from its nonuniform
samples,

= ( ) + ≥ ( )z y T w n, 0, 2.2n n n

corrupted by additive noise wn at sampling times ≥T n, 0n . Then in
the next four subsections, we discuss local stability, convergence,
approximation error, statistical characterization, and extensions of
the proposed ANF method. We also compare the performance of
our approach (2.13) with some of the existing ANF methods for
estimating frequency in Section 2.2 and 2.5.

2.1. The proposed method

The dynamical system (1.3) converges to its unique periodic
orbit,

θ θ ϕ
ξ

θ θ ϕ
ξ

θ= − ( + ) ( + )
( )

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥x x

A t A t
, ,

cos
2

,
sin

2
, ,

2.3
T

T

1 2
0 0 0

0

when the adaption speed γ satisfies

γ ξ< < ( )A0 4 / 2.42

[29] . The dynamical system (1.3) can be rewritten as follows:

= ( ) ( )D tX F X, , 2.5

where θ= [ ]x xX , , T
1 2 is the state of the system, and

ξθ θ θ γ ξθ θ( ) = − − + ( − )⎡⎣ ⎤⎦t x x x y x y xF X, , 2 , 2 T
2 2

2
1

2
2

2
1

is a real analytic function of t and X . Therefore ( )tX is real analytic
by the Cauchy–Kovalevskaya theorem [51, Theorem 2 of Chap-
ter 4], and it has the following Taylor expansion:

∫ ( )∑( ) = ( )
!

+ ( ( ))
−

! ( )=

t
D T

k
t D s s

t s

m
dsX

X
F X,

2.6k

m k
n k

T

t
m

m

0 n

for all ≤ ≤ +T t Tn n 1 and ≥m 0.
For an input signal of sinusoidal type, we observe that the state

vector ( )tX of the dynamical system (1.3) can be approximated by
Taylor polynomials ∑ ( )( − ) != D T t T kX /k

m k
n n

k
0 of low order ≤m 4,
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