
Author's Accepted Manuscript

Utilizing Binocular Vision to Facilitate Completely Blind 3D Image Quality Measurement

Wujie Zhou, Lu Yu, Weiwei Qiu, Ting Luo, Zhongpeng Wang, Ming-Wei Wu

www.elsevier.com/locate/sigpro

PII: S0165-1684(16)30105-0

http://dx.doi.org/10.1016/j.sigpro.2016.06.005 DOI:

SIGPRO6165 Reference:

To appear in: Signal Processing

Received date: 20 October 2015 Revised date: 31 May 2016 Accepted date: 6 June 2016

Cite this article as: Wujie Zhou, Lu Yu, Weiwei Qiu, Ting Luo, Zhongpeng Wang and Ming-Wei Wu, Utilizing Binocular Vision to Facilitate Completely Blind Measurement, Signal 3D **Image** Quality **Processing** http://dx.doi.org/10.1016/j.sigpro.2016.06.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain ACCEPTED MANUSCRIPT

Utilizing Binocular Vision to Facilitate Completely Blind 3D Image Quality

Measurement

Wujie Zhou^{a,b*}, Lu Yu^a, Weiwei Qiu^b, Ting Luo^c, Zhongpeng Wang^b, Ming-Wei Wu^b

 a College of Information and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

^b School of Information and Electronic Engineering, Zhejiang University of Science and Technology,

Hangzhou 310023, China

^c College of Science and Technology, Ningbo University, Ningbo, 315211, China

Abstract: In the field of practical three-dimensional (3D) applications, blind measurement of the

perceptual quality of distorted 3D images remains a challenging research topic. In this paper, we

propose a completely blind 3D image quality measurement (IQM) metric that utilizes a binocular

vision mechanism to better align with human perception. As its primary focus, this study is inspired by

the visual processing in the primary visual cortex (V1) and the higher visual areas (V2) of binocular

vision to facilitate blind 3D-IQM. Furthermore, the proposed metric does not require distorted

samples or human subjective opinion scores for training. More specifically, the binocular

quality-predictive features of areas V1 and V2 are first extracted from a corpus of pristine natural 3D

images. Subsequently, a pristine multivariate Gaussian (MVG) model is trained from the extracted

features. Finally, with the trained MVG model, the quality of distorted 3D images is measured using a

Mahalanobis distance. Experimental results using two public benchmark 3D databases show that in

comparison with current state-of-the-art IQM metrics, the proposed metric achieves excellent

prediction performance.

Keywords—3D image quality measurement, binocular vision, completely blind, pristine multivariate

Gaussian model.

*Corresponding author.

E-mail addresses: wujiezhou@163.com

Download English Version:

https://daneshyari.com/en/article/6958223

Download Persian Version:

https://daneshyari.com/article/6958223

<u>Daneshyari.com</u>