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a b s t r a c t

The emergence of synchronization in a network of coupled oscillators is a fascinating subject of
multidisciplinary research. This survey reviews the vast literature on the theory and the applications
of complex oscillator networks. We focus on phase oscillator models that are widespread in real-world
synchronization phenomena, that generalize the celebrated Kuramoto model, and that feature a rich
phenomenology. We review the history and the countless applications of this model throughout science
and engineering. We justify the importance of the widespread coupled oscillator model as a locally
canonical model and describe some selected applications relevant to control scientists, including vehicle
coordination, electric power networks, and clock synchronization. We introduce the reader to several
synchronization notions and performance estimates. We propose analysis approaches to phase and
frequency synchronization, phase balancing, pattern formation, and partial synchronization. We present
the sharpest known results about synchronization in networks of homogeneous and heterogeneous
oscillators, with complete or sparse interconnection topologies, and in finite-dimensional and infinite-
dimensional settings. We conclude by summarizing the limitations of existing analysis methods and by
highlighting some directions for future research.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization in networks of coupled oscillators is a perva-
sive topic in various scientific disciplines ranging from biology,
physics, and chemistry to social networks and technological ap-
plications. A coupled oscillator network is characterized by a pop-
ulation of heterogeneous oscillators and a graph describing the
interaction among the oscillators. These two ingredients give rise
to a rich dynamic behavior that keeps on fascinating the scientific
community.

Within the rich modeling phenomenology on synchroniza-
tion among coupled oscillators, this paper focuses on the widely
adapted model of a continuous-time and periodic limit-cycle
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oscillator network with continuous, bidirectional, and anti-
symmetric coupling. We consider a system of n oscillators, each
characterized by a phase angle θi ∈ S1 and a natural rotation
frequency ωi ∈ R. The dynamics of each isolated oscillator are
thus θ̇i = ωi for i ∈ {1, . . . , n}. The interaction topology and
coupling strength among the oscillators are modeled by a con-
nected, undirected, and weighted graph G(V, E, A) with nodes
V = {1, . . . , n}, edges E ⊂ V × V , and positive weights aij =

aji > 0 for each undirected edge {i, j} ∈ E . The interaction between
neighboring oscillators is assumed to be additive, anti-symmetric,
diffusive,2 and proportional to the coupling strengths aij. In this
case, the simplest 2π-periodic interaction function betweenneigh-
boring oscillators {i, j} ∈ E is aij sin(θi − θj), and the overall model
of coupled phase oscillators reads as

θ̇i = ωi −

n
j=1

aij sin(θi − θj), i ∈ {1, . . . , n}. (1)

Despite its apparent simplicity, this coupled oscillator model gives
rise to rich dynamic behavior, and it is encountered in many

2 The interaction between two oscillators is diffusive if its strength depends on
the corresponding phase difference; such interactions arise for example in the
discretization of the Laplace operator in diffusive partial differential equations.

http://dx.doi.org/10.1016/j.automatica.2014.04.012
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.04.012
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.04.012&domain=pdf
mailto:dorfler@control.ee.ethz.ch
mailto:bullo@engineering.ucsb.edu
http://dx.doi.org/10.1016/j.automatica.2014.04.012


1540 F. Dörfler, F. Bullo / Automatica 50 (2014) 1539–1564

scientific disciplines ranging from natural and life sciences to en-
gineering. This paper surveys recent results and applications of the
coupled oscillator model (1) and of its variations.

The motivations for this survey are manifold. Recent years
have witnessed much theoretical progress and novel applications,
which are not covered in existing surveys (Acebrón, Bonilla,
Vicente, Ritort, & Spigler, 2005; Arenas, Díaz-Guilera, Kurths,
Moreno, & Zhou, 2008; Dorogovtsev, Goltsev, & Mendes, 2008;
Strogatz, 2000) published in the physics literature. Indeed, control
scientists have shown an increasing interest in complex networks
of coupled oscillators and have recently contributed many novel
approaches and results. Much of this interest has focused on (i)
synchronization rather than more complex dynamic phenomena,
(ii) finite numbers of oscillators with a non-trivial interaction
topology, and (iii) connections with graph theory and multi-agent
systems. It is therefore timely to provide a comprehensive review
in a unified control-theoretical language of the best known results
in this area. With this aim, this survey provides a systems and
control perspective to coupled oscillator networks, focusing on
quantitative results and control-relevant applications in sciences
and technology.

1.1. Mechanical analog and basic phenomenology

A mechanical analog of the coupled oscillator model (1) is the
spring network shown in Fig. 1. This network consists of a group of
particles constrained tomove on a unit circle and assumed tomove
without colliding. Each particle is characterized by its angle θi ∈ S1

and frequency θ̇i ∈ R, and its inertial and damping coefficients
are Mi > 0 and Di > 0 respectively. Pairs of interacting parti-
cles i and j are coupled through a linear-elastic springwith stiffness
kij > 0. The external forces and torques acting on eachparticle are a
viscous damping force Diθ̇i opposing the direction of motion, an
external driving torque τi ∈ R, and an elastic restoring torque
kij sin(θi − θj) between pairs of interacting particles. The overall
spring network is modeled by a graph, whose nodes are the par-
ticles, whose edges are the linear-elastic springs, and whose edge
weights are the positive stiffness coefficients kij = kji. Under these
assumptions, it can be shown (Dörfler, Chertkov, & Bullo, 2013)
that the system of spring-interconnected particles obeys the dy-
namics

Miθ̈i + Diθ̇i = τi −

n
j=1

kij sin(θi − θj), i ∈ {1, . . . , n}. (2)

In the limit of small masses Mi and uniformly-high viscous damp-
ing D = Di, that is, Mi/D ≈ 0, we recover the coupled oscillator
dynamics (1) from its mechanical analog (2) with natural rotation
frequencies ωi = τi/D and with coupling strengths aij = kij/D.

The mechanical analog in Fig. 1 illustrates the basic phe-
nomenology displayed by the oscillator network (1). The spring-
interconnected particles are subject to a competition between
the external driving forces ωi and the internal restoring torques
aij sin(θi − θj). Hence, the interesting coupled oscillator dynam-
ics (1) arise from a trade-off between each oscillator’s tendency
to align with its natural frequency ωi and the synchronization-
enforcing coupling aij sin(θi − θj) with its neighbors. Intuitively,
a weakly coupled and strongly heterogeneous (i.e., with strongly
dissimilar natural frequencies) network does not display any
coherent behavior, whereas a strongly coupled and sufficiently ho-
mogeneous network is amenable to synchronization, where all fre-
quencies θ̇i(t) or even all phases θi(t) become aligned.

1.2. History, related applications, and theoretical developments

A brief history of synchronization: The scientific interest in
synchronization of coupled oscillators can be traced back to

Fig. 1. Mechanical analog of a coupled oscillator network.

the work by Huygens (1893) on ‘‘an odd kind of sympathy’’
between coupled pendulum clocks, mutual influence of organ
pipes (Rayleigh, 1896), locking phenomena in circuits and radio
technology (Adler, 1946; Appleton, 1922; Van Der Pol, 1927), the
analysis of brainwaves and self-organizing systems (Wiener, 1948,
1958), and it still fascinates the scientific community nowadays
(Strogatz, 2003; Winfree, 2001). We refer to Blekhman (1988) and
Pikovsky, Rosenblum, and Kurths (2003) for a detailed historical
account of synchronization studies.

A variation of the considered coupled oscillator model (1) was
first proposed by Winfree (1967). Winfree considered general
(not necessarily sinusoidal) interactions among the oscillators.
He discovered a phase transition from incoherent behavior with
dispersed phases to synchrony with aligned frequencies and
coherent (i.e., nearby) phases. Winfree found that this phase
transition depends on the trade-off between the heterogeneity of
the oscillator population and the strength of the mutual coupling,
which he could formulate by parametric thresholds. However,
Winfree’s model was too general to be analytically tractable.
Inspired by these works, Kuramoto (1975) simplified Winfree’s
model and arrived at the coupled oscillator dynamics (1) with a
complete interaction graph and uniform weights aij = K/n:

θ̇i = ωi −
K
n

n
j=1

sin(θi − θj), i ∈ {1, . . . , n}. (3)

In an ingenious analysis, Kuramoto (1975, 1984a) showed that
synchronization occurs in the model (3) if the coupling gain K
exceeds a certain threshold Kcritical function of the distribution of
the natural frequencies ωi. The dynamics (3) are nowadays known
as the Kuramoto model of coupled oscillators, and Kuramoto’s
original work initiated a broad stream of research. A compelling
historical perspective is offered by Strogatz (2000). We also
recommend the surveys by Acebrón et al. (2005), Arenas et al.
(2008) and Dorogovtsev et al. (2008).
Canonical model and prototypical example: Diffusively-coupled
phase oscillators appear to be quite specific at first glance, but
they are locally canonical models for weakly coupled and periodic
limit-cycle oscillators (Hoppensteadt & Izhikevich, 1997). This fact
is established in work by the computational neuroscience com-
munity which has developed different approaches (Ermentrout &
Kopell, 1984, 1991; Hoppensteadt & Izhikevich, 1997; Izhikevich,
2007; Izhikevich & Kuramoto, 2006) to reduce general periodic
limit-cycle oscillators and weak interaction models to diffusively-
coupled phase oscillator networks of the form

θ̇i = ωi +

n
j=1

hij(θi − θj), (4)

where hij : S1
→ R are 2π-periodic coupling functions. Among

such phase oscillator networks, the often encountered and most
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