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a b s t r a c t

An input design method is presented for guaranteeing the diagnosability of faults from the outputs of a
system. Faults are modeled by discrete switches between linear models with bounded disturbances and
measurement errors. Zonotopes are used to efficiently characterize the set of inputs that are guaranteed to
lead to outputs that are consistent with at most one fault scenario. Provided that this set is nonempty, an
element is then chosen that is minimally harmful with respect to other control objectives. This approach
leads to a nonconvex optimization problem, but is shown to be equivalent to a mixed-integer quadratic
program that can be solved efficiently. Methods are given for reducing the complexity of this program,
including an observer-based method that drastically reduces the number of binary variables when many
sampling times are required for diagnosis.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many industries (chemical (Venkatasubramanian, Ren-
gaswamy, Yin, & Kavuri, 2003), aerospace (Zolghadri, 2010), etc.),
the trend toward increasing complexity and automation has made
component malfunctions and other abnormal events (i.e., faults)
increasingly frequent. At the same time, economic considerations
have led to the use of inexpensive and unreliable components in
many mass market applications. Accordingly, achieving safe and
reliable operation formany systems now requires fast and accurate
methods for detecting and diagnosing faults on the basis of pro-
cess measurements. These tasks are rendered difficult by the con-
founding effects of disturbances, measurement uncertainty, and
the compensatory actions of the control system.

Fault detection and diagnosis methods can be categorized as
either passive or active. Passive approaches attempt to diagnose
faults by comparing the available input–output data for the pro-
cess to models or historical data (Chiang, Russell, & Braatz, 2001;
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Venkatasubramanian et al., 2003). Often, however, faults may not
be detectable in the available measurements, or cannot be diag-
nosed without exciting the system. Accordingly, the active ap-
proach involves injecting a signal into the system to improve
detectability of the fault (Blackmore, Rajamanoharan, & Williams,
2008; Campbell & Nikoukhah, 2004; Esna Ashari, Nikoukhah, &
Campbell, 2012; Niemann, 2006; Nikoukhah, 1998; Simandl &
Puncochar, 2009).

This article presents a set-based approach for active fault diag-
nosis. The process of interest, under nominal and various faulty
conditions, is described by a set of linear discrete-time mod-
els subject to bounded disturbances and measurement errors.
Faults are modeled by discrete switches between these models.
The proposed framework permits multiple faults occurring ei-
ther sequentially or simultaneously, although computational com-
plexity ultimately limits the number of scenarios considered (see
Section 2). Given a set of scenarios, the objective is to compute
an input that is guaranteed to generate outputs consistent with at
most one scenario, thereby providing a complete fault diagnosis.
Such inputs are referred to as separating inputs. In addition to this
diagnosis condition, the computed input is further required to be
minimally harmful with respect to other control objectives.

This problem was first considered in Nikoukhah (1998). In
the case of two models (one nominal and one faulty), the set
of separating inputs was shown to be the complement of a pro-
jection of a high-dimensional polytope. Unfortunately, polytope
projection is computationally intensive and numerically unstable
in the required dimensions. The book (Campbell & Nikoukhah,
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2004) proposes an active input design method for the case where
the disturbances and measurement errors are energy bounded
rather than pointwise bounded. The input is chosen as the solution
of a bilevel optimization problem in which the outer program
searches for a minimum two-norm input and the inner program
restricts the feasible set to separating inputs. This optimization
problem is nonconvex and is solved in the two-model case by a
specialized algorithm. Various extensions of this approach have
been investigated, including methods for continuous-time and
nonlinear systems (Andjelkovic, Sweetingham, & Campbell, 2008;
Campbell & Nikoukhah, 2004), asymptotically optimal implemen-
tations (Nikoukhah & Campbell, 2006; Nikoukhah, Campbell, &
Delebecque, 2000), and methods for systems under linear feed-
back control (Ashari, Nikoukhah, & Campbell, 2009, 2012; Esna
Ashari et al., 2012). A more general optimization formulation has
also been proposed that permits multiple fault models and arbi-
trary objectives and constraints (Campbell, Horton, & Nikoukhah,
2002; Campbell & Nikoukhah, 2004). However, the structure of the
two-model formulation is lost and the method instead relies on
general-purpose software to solve difficult optimal control prob-
lems constrained by two-point boundary-value problems.

This article treats the casewhere thedisturbances andmeasure-
ment errors are pointwise bounded rather than energy bounded,
and uses zonotopes rather than polytopes or ellipsoids. After a for-
mal problem statement and some preliminary developments in
Sections 2 and 3, the set of separating inputs is characterized us-
ing efficient zonotope computations in Section 4, effectively elimi-
nating the polytope projection problem in Nikoukhah (1998). This
result is then used to pose a bilevel optimization problem for
choosing an optimal separating input in Section 5, similar to the
approach in Nikoukhah and Campbell (2006). The use of zonotopes
here permits a reformulation as a mixed-integer quadratic pro-
gram (MIQP) for which the number of integer variables can be con-
trolled using zonotope order reduction techniques. The resulting
optimization problem is simple to implement and practically solv-
able, while being flexible with respect to the choice of objective,
the presence of state and control constraints, the possibility ofmul-
tiple fault models, and the possibility of multiple faults occurring
simultaneously or sequentially in the time interval of interest.
Techniques for reducing the computational complexity of the ap-
proach are discussed in Section 6, and an approximate implemen-
tation of the approach using set-valued observers is proposed in
Section 7 to reduce the complexity when many sampling times
are required for diagnosis. Numerical examples are presented in
Section 8, and Section 9 contains concluding remarks. This arti-
cle extends the preliminary results in Scott, Findeisen, Braatz, and
Raimondo (2013) by providing a more general theoretical devel-
opment, an improved optimization formulation, a treatment of
state constraints, several newmethods for reducing computational
complexity, and extended numerical results.

2. Problem formulation

Consider a discrete-time system with time k, state xk ∈ Rnx ,
output yk ∈ Rny , input uk ∈ Rnu , disturbance wk ∈ Rnw , and mea-
surement error vk ∈ Rnv . In each interval [k, k + 1], k = 0, 1, . . . ,
the system evolves according to one of nm possible linear models.
The matrices of these models are distinguished by the argument
i ∈ I ≡ {1, . . . , nm}:

xk+1 = A(ik)xk + B(ik)uk + r(ik)+ Bw(ik)wk, (1)

yk = C(ik)xk + s(ik)+ Dv(ik)vk. (2)

The model i = 1 is nominal, and the rest are faulty. Models repre-
sentingmultiple, simultaneous faults canbe included in I if desired.
The constant vectors r(i) and s(i) are used to model additive faults

such as sensor and actuator bias. It is assumed that x0 ∈ X0, and
(wk, vk) ∈ W ×V , ∀k ∈ N, where X0,W and V are zonotopes (see
Section 3.1).

A fault at time k is modeled by a transition from one model
in I to another; i.e., ik ≠ ik−1. Given a time interval [0,N], a
fault scenario on [0,N] is defined as a sequence (i0, . . . , iN) ∈

IN . Let Ĩ ⊂ IN denote a set of permissible fault scenarios on
[0,N]. Given Ĩ, the goal is to compute an open-loop input sequence
ũ = (u0, . . . ,uN−1) such that any observed sequence of outputs
ỹ = (y0, . . . , yN) is consistent with at most one fault scenario in Ĩ,
regardless of the exact values of the initial condition, disturbances,
and measurement errors in the sets X0,W , and V . Such input
sequences are referred to as separating inputs (see Section 4).
Ideally, ũ should be minimal in some sense (e.g., length, norm).
We assume that N is specified and focus on the computation of
a separating input sequence that minimizes a quadratic objective
subject to input and state constraints. This computation can be
iterated with N increasing from 1 until the problem becomes
feasible.

Requiring that ũ is a separating input is equivalent to requiring
that every distinct pair of scenarios ĩ, j̃ ∈ Ĩ can be distinguished.
Thus, ũmust satisfy Q =

 s
2


conditions, where s is the number of

scenarios in Ĩ (see (19) in Section 5). Despite the computational ad-
vantages of the proposedmethods, this combinatorial dependence
demands a parsimonious selection of permissible scenarios. If ev-
ery scenario is permissible, then s = (nm)

N . However, many sce-
narios will be nonsensical (e.g., spontaneously corrected faults) or
very unlikely (e.g., multiple unrelated faults). Further reductions
can be achieved by limiting the frequency of faults (i.e., imposing
a minimum number of repeats ik = ik+1 = · · · = ik+d after a tran-
sition). Effectively choosing scenarios for a given application is not
considered here; Ĩ is assumed given.

3. Preliminaries

3.1. Zonotopes and set operations

The methods in this article involve computations with zono-
topes, which are centrally symmetric convex polytopes that can
be described as Minkowski sums of line segments (Kuhn, 1998).
In generator representation, a zonotope Z is prescribed by its center
c ∈ Rn and generators g1, . . . , gng ∈ Rn as Z = {Gξ + c : ξ ∈

Rng , ∥ξ∥∞ ≤ 1}, where G ≡ [g1 . . . gng ]. We use the notation
Z = {G, c}. The order of a zonotope is ng/n. A first-order zonotope
with linearly independent generators is a parallelotope.

Let Z, Y ⊂ Rn, R ∈ Rm×n, and define the operations

RZ ≡ {Rz : z ∈ Z}, (3)
Z ⊕ Y ≡ {z + y : z ∈ Z, y ∈ Y }, (4)

Z ⊖ Y ≡ {x ∈ Rn
: x + Y ⊂ Z}. (5)

When Z = {Gz, cz} and Y = {Gy, cy} are zonotopes, (3)–(4) are also
zonotopes and can be computed efficiently (Kuhn, 1998):

RZ = {RGz,Rcz}, Z ⊕ Y = {[Gz Gy], cz + cy}. (6)

In contrast, when Z and Y are general convex polytopes, the
Minkowski sum (4) and the linear mapping (3) with singular R
(e.g., polytope projection) both become extremely computation-
ally demanding and numerically unstable in dimensions greater
than about 10 (Althoff & Krogh, 2011; Fukuda, 2004). However, the
results of the operations in (6) can be higher order than Z and Y . To
avoid increasing orders, techniques for enclosing a given zonotope
within a zonotope of lower order must be used. For the computa-
tions presented in Section 8, Method C in Althoff, Stursberg, and
Buss (2010) is used.
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