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a b s t r a c t

In this paper, we present an algorithm for estimating poles of linear time-invariant systems by using the
backward shift operator. We prove that poles of rational functions, including zeros and multiplicities,
are solutions to an algebraic equation which can be obtained by taking backward shift operator to the
shifted Cauchy kernels in the unit disc case. The algorithm is accordingly developed for frequency-domain
identification. We also prove the robustness of this algorithm. Some illustrative examples are presented
to show the efficiency in systems with distinguished and multiple poles.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

System identification is to buildmathematical models which fit
the measured data from discrete or continuous systems. A num-
ber of methods have been developed for this problem, such as Gu
and Khargonekar (1992), Helmicki, Jacobson, and Nett (1991), Pin-
telon, Guillaume, Rolain, Schoukens, andHamme (1994),Wahlberg
(1991), Wahlberg (1994), Wahlberg and Mäkilä (1996). A classi-
cal guidebook for one getting to know this topic is Ljung (1999).
For identification of linear time-invariant (LTI) systems, a priori-
knowledge of poles is important, especially for the methods that
adopt rational orthogonal bases such as in de Vries and Van den
Hof (1998), Ninness (1996), Ninness and Gustafsson (1994) and
Ninness, Hjalmarsson, and Gustafsson (1997). In these methods,
the estimated poles are used to construct rational orthogonal ba-
sis functions. A collection of the excellent results is Heuberger, Van
den Hof, and Wahlberg (2005).

In unit disc case, the general setting of a rational orthogonal
basis is
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Bk(z) = B{a1,...,ak}(z) ,


1 − |ak|2

1 − akz

k−1
l=1

z − al
1 − alz

, (1)

where aks (k = 1, . . .) are in the unit disc, (a means conjugation
of a). Many researchers work on choosing optimal n-poles {ak}nk=1
in order to define the best rational orthogonal bases for a sys-
tem. Oliveira e Silva derived the optimal pole conditions for the
Laguerre, Kautz and general orthogonal basis function models in
Oliveira e Silva (1995a,b, 1997), respectively. InMi and Qian (2010,
2012) and Mi, Qian, and Wan (2012), adaptive selection of poles is
studied. Other attempts to estimate optimal pole positions of a La-
guerre model are given in Casini, Garulli, and Vicino (2003) and
Sabatini (2000). Generally speaking, the pole estimation of an LTI
system, in practice, is not easy.

For a discrete LTI systemwhich is causal and stable, let {xk}, {yk}
be the input and output signals, respectively. There is a relation
between {xk} and {yk} as

yk = {xk} ∗ {hk} =

+∞
l=0

hlxk−l, (2)

where {hk} is the impulse response. With an operator q, qx(k) =

x(k + 1), is drawn into, (2) can be represented as

yk =

+∞
l=0

hlxk−l =


+∞
l=0

hlq−l


xk. (3)
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The related function

G(z) =

+∞
l=0

hlz−l (4)

is the transfer function of the system. The values of the transfer
function for z on the unit circle are called frequency responses.
Under the stability and causality assumption, G(z) is a proper
rational function with real coefficients. To identify G(z) with
general orthogonal bases, estimating poles for the basis functions
plays a significant role.

As is well-known, the basis (1) can be obtained by the shifted
Cauchy kernels ea(z) with the Gram–Schmidt process, where ea(z)
is given by

ea(z) =


1 − |a|2

1 − az
.

For these kernels, there is a very good property when taking
backward shift operator on them. Based on this property, we can
estimate poles of ea’s instead of the orthogonal cases. In this paper,
we are to locate poles of an LTI system based on a set of frequency
domain measurements by using backward shift operator, which
results in an algorithm, we call it backward shift algorithm.

This paper is arranged as follows. In Section 2, we study
each case of taking backward shift operator to rational functions.
After that, we introduce the backward shift algorithm in detail in
Section 3. Examples are given in Section 4 to illustrate the proposed
idea. Some conclusions are drawn in Section 5.

2. Backward shift on rational functions

2.1. Backward shift operator

The backward shift operator, denoted by S,

S(f )(z) =
f (z) − f (0)

z
, (5)

is the Banach space adjoint of the forward shift operator F(f )(z) =

zf (z) in the Hardy-2 space in the unit disc, viz.,

⟨S(f ), g⟩ = ⟨f , F(g)⟩, f , g ∈ H2. (6)

It is an important and interesting operator. Comprehensive studies
in the operator and related topics can be found, for instance, in
Aleksandrov (1979), Cima and Ross (2000) and Nikol’skiĭ (1986).
It is well known that a collection of countably many reproducing
kernels of theHardy spaceH2, viz., conjugates of the shifted Cauchy
kernels, generates a backward shift invariant subspace.

For 0 ≠ a ∈ D, the unit disc, we notice the kernel ea(z) =
1

1−az
(for convenience we will call a a pole of it, although we know
precisely it is 1

a ) is an eigenvector of S, viz.,

S(ea)(z) =
ea(z) − ea(0)

z

=
a

1 − az
.

Therefore,

S2(ea)(z) = S(S(ea))(z)

=
a2

1 − az
,

and, in general,

Sn(ea)(z) =
an

1 − az
. (7)

An n-tuple (a1, . . . , an) in the unit disc corresponds to one of
the following two n-tuples of partial fractions, being determined
on whether some ak’s are zero. Denote by b1, . . . , bm all the
distinguished ones among a1, . . . , an.
Case 1. If none of the distinguished bk’s is zero, then it corresponds
to

1

1 − b1z
, . . . ,

1

(1 − b1z)l1
, . . . ,

1

1 − bmz
, . . . ,

1

(1 − bmz)lm
,

where l1, . . . , lm are multiples of b1, . . . , bm, respectively and l1 +

· · · + lm = n.
A rational function p/q, where p and q are co-prime polynomi-

als, is a non-degenerate linear combination of the above linearly
independent set of functions if and only if the degree of q is equal
to n, and the degree of p is less than n.

Case 2. If one of the distinguished bk’s is zero, say, b1 = 0, with
multiplicity l1, then it corresponds to

1, . . . , z l1 ,
1

1 − b2z
, . . . ,

1

(1 − b2z)l2
, . . . ,

1

(1 − bmz)lm
,

where l1 + · · · + lm = n.
A rational function p/q, where p and q are co-prime polynomi-

als, is a non-degenerate linear combination of the above linearly
independent set of functions if and only if the degree of q is equal
to n − l1, and the degree of p is less than n.

These cases will be studied in detail in the following three
subsections.

2.2. The distinguished non-zero poles case

In this subsection we treat the case where all bk, k = 1, . . . , n,
are different from each other, that is, eachmultiplicity is 1. Assume
that f is of the form

f (z) =

n
k=1

λk

1 − bkz
, (8)

where λks are non-zero. Applying, consecutively, the backward
shift operator S to f (z) n times, we have

S(f )(z) =
λ1b1

1 − b1z
+

λ2b2
1 − b2z

+ · · · +
λnbn

1 − bnz
,

S2(f )(z) =
λ1b

2
1

1 − b1z
+

λ2b
2
2

1 − b2z
+ · · · +

λnb
2
n

1 − bnz
,

...

Sn(f )(z) =
λ1b

n
1

1 − b1z
+

λ2b
n
2

1 − b2z
+ · · · +

λnb
n
n

1 − bnz
.

Since the bks are distinguished, { 1
1−bkz

}
n
k=1 is a linearly independent

collection. There exists a unique non-zero sequence {µk}
n
k=0 such

that

µ0f (z) + µ1S(f )(z) + · · · + µnSn(f )(z) = 0. (9)

Precisely,

0 = (µ0 + µ1b1 + · · · + µn−1b
n−1
1 + µnb

n
1)

λ1

1 − b1z

+ (µ0 + µ1b2 + · · · + µn−1b
n−1
2 + µnb

n
2)

λ2

1 − b2z
...

+ (µ0 + µ1bn + · · · + µn−1b
n−1
n + µnb

n
n)

λn

1 − bnz
.
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