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a b s t r a c t

This paper investigates the stability intervals of time-delays for fractional-order retarded time-delay
systems. By the Orlando formula, the existence of the crossing frequencies is brought to verify the
stability related to the commensurate time-delay. For each crossing frequency, the corresponding critical
time-delays are determined by the generalized eigenvalues of two matrices constructed by the crossing
frequency, the commensurate fractional-order and the coefficients of the characteristic function. The root
tendency (RT) is defined to provide a method to analyze the number of the unstable roots for a given
crossing frequency and critical time-delay. Based on the RT values and the number of the unstable roots
for fractional-order systems with no time-delay, a computing method on the stability intervals of time-
delay is proposed in this paper. Finally, a numerical example is offered to validate the effectiveness of this
method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the investigations on fractional-order systems have
attractedmuch attention, due to its more accurate descriptions for
real-world systems, especially for systems with the dynamic char-
acteristics of viscoelasticity anddiffusion (Krishna, 2011;Machado,
Kiryakova, & Mainardi, 2011). Meanwhile, fractional-order con-
trollers have been applied to many engineering applications, by
introducing the flexibility in control systems (Efe, 2011). The
essential requirement of controller design is to achieve of the sta-
bility of any control system. For the fractional-order systems repre-
sented by transfer function, the condition that all the characteristic
roots of the fractional-order characteristic equation locate at the
left half-plane is the stability criterion (Bonnet & Partington, 2002;
Matignon, 1998). Based on this criterion, the stability of fractional-
order systems with interval uncertainties was discussed by Gao
and Liao (2013) and Moornani and Haeri (2010). For state-space
description of fractional-order systemswithno time-delay, the sta-
bility criteria were offered for the commensurate fractional-order
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α belonging to 0 < α < 1 and 1 < α < 2 by Lu and Chen (2010),
Farges, Moze, and Sabatier (2010) and Lan and Zhou (2011).

In practical plants including fractional-order systems, the time-
delay is a common phenomenon such as in the heating process of
the aluminum rod (Victor, Malti, Garnier, & Oustaloup, 2013). Al-
though the requirements of the fractional-order Lyapunov func-
tionswere proposed by Li, Chen, and Podlubny (2009) and Baleanu,
Ranjbar, Sadati, Delavari, and Abdeljawad (2011), it is not straight-
forward to establish a specific Lyapunov function, such as the
quadratic function for integer-order systems. Thereby, most of the
investigations on the stability of time-delay fractional-order sys-
tems are based on transfer function models. Bonnet and Parting-
ton (2002) and Moornani and Haeri (2011) extended the stability
criteria for fractional-order retarded and neutral systems with
time-delays in the frequency domain, requiring that all the roots
of the characteristic equations lie at the left half-plane. Since the
exponential type transcendental term is involved in the charac-
teristic function, an infinite number of characteristic roots exist,
leading to the complexity in the stability analysis. To overcome
this obstacle, a number of criteria have been presented. Hwang
and Cheng (2006) presented a numerical algorithm for the BIBO-
stability of fractional-order time-delay systems based on using
Cauchy’s integral theoremand solving an initial-value problem. Shi
and Wang (2011) proposed an analytical criterion for the BIBO-
stability of fractional-order time-delay systems by argument for-
mula for the complex function. Yu and Wang (2011) proposed a
graphical method of the BIBO-stability on fractional-order systems
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with time-delayswas proposed, and stability on the interval uncer-
tainties in the coefficients.

The aforementioned methods are available for the stability
analysis with a fix time-delay. To identify all the stability intervals,
the numerical methods were proposed for the fractional-order
systems with commensurate time-delays by Fioravanti, Bonnet,
Ozbay, and Niculescu (2012). In this study, we propose an
analyticalmethod to determine the stability of the fractional-order
retarded systems with the commensurate time-delays, based on
the concept by Fioravanti et al. (2012). By the Orlando formula,
the approach to compute the crossing frequencies for integer-
order retarded systems with the commensurate time-delays were
brought by Chen, Gu, and Nett (1995). We extend this method
to find the crossing frequencies for fractional-order time-delay
systems. Then, the critical time-delays corresponding to the
crossing frequencies are established, and all the stability intervals
on the time-delay are determined. Meanwhile, the number of
unstable roots can be obtained by an analytical method, avoiding
running a great deal of computation.

The rest of the paper is organized as follows. Section 2 addresses
the problem formulation and some lemmas. Section 3 brings
the computing methods of the crossing frequencies, the critical
time-delays and the number of unstable roots. Section 4 offers a
numerical example to illustrate the effectiveness of the proposed
method. Section 5 concludes the work.

2. Problem formulation

In this study,we compute the stability interval of the time-delay
term τ for the following commensurate fractional-order retarded
system as:

Dnαy(t) +

n−1
i=0

q
k=0

ak,iDiαy(t − kτ) = u(t), (1)

where y(t) and u(t) are the output and control input respectively,
the coefficients ak,i, k = 0, 1, . . . , q, i = 0, 1, . . . , n − 1 are the
known real constants, Dα is the fractional-order derivative which
can be defined by the Riemann–Liouville definition or the Caputo
definition, and α is the commensurate fractional-order.

Under the zero initial conditions, the Laplace transforms of
Dα f (t) are both sαF(s) by the Riemann–Liouville and the Caputo
definitions, assuming that the Laplace transform of f (t) is F(s).
The characteristic function of the system (1) can be represented
as follows:

F(s, e−τ s) =

q
k=0

ak(s)e−τks, (2)

where

a0(s) =

n−1
i=0

a0,isiα + snα,

ak(s) =

n−1
i=0

ak,isiα, k = 1, 2, . . . , q.

The main object of this paper is to determine the stability interval
with respect to τ . The stability criterion is similar to the integer-
order systems, i.e. if all the real parts of the solutions of the equa-
tion F(s; e−τ s) = 0 for arg(s) ∈ (−π; π ] are less than zero, the
fractional-order system (1) is BIBO-stable. For the sake of conve-
nience, the stability investigated in this paper represents the BIBO-
stability.

We substitute s = jω into (2), where j is the imaginary unit.
If there exists a frequency ω = ωc fulfilling F(jωc, e−jωcτ ) = 0,
the oscillation response of time-delay fractional-order system will

be produced. For ωc = 0, the characteristic function becomes
F(0, 1). The existence of the crossing frequency ωc = 0 requiresq

k=0 ak,0 = 0. In this case, the fractional-order time-delay sys-
tems are unstable for all τ , and no stability interval of the time-
delay exists, thus it is not necessary to test the stability for this case.
We assume ωc ≠ 0, namely, the condition

q
k=0 ak,0 ≠ 0 holds in

this paper. Since the coefficients of characteristic function are real
numbers, the solutions of characteristic equation are real numbers
or complex conjugate numbers, ωc is the crossing frequency im-
plies that −ωc is also a crossing frequency. Hence, we investigate
the crossing frequencies for ωc ∈ R+ in this study. Denoting M as
the number of the crossing frequencies, the corresponding crossing
frequencies ωc can be represented by
ωc ∈ {ωc1, ωc2, . . . , ωcM}. (3)
For a specific ωck, k = 1, 2, . . . ,M , the corresponding time-delay
value fulfilling the characteristic equation (2) is defined as the crit-
ical time-delay τk,j,l, where j = 1, 2, . . . ,Nk, the constant Nk is a
positive number determined by Theorem 2 in the next section, and
l = 0, 1, . . . ,+∞ by the periodical property for τk,j,l.

Based on the definition of τk,j,l, we obtain τk,j,l+1 − τk,j,l =

2π/ωck, which means that we can separate the value τk,j,l into
τk,j,l = τk,j,0 + 2lπ/ωck, l = 0, 1, . . . ,+∞. The primary task is
to obtain the value τk,j,0, since other critical time-delays can be
deduced by the previous separating operation.

The Orlando formula will be used to compute the crossing
frequencies and the corresponding critical time-delays, which is
given by

Lemma 1 (Orlando Formula Young, 1979). Let zi ∈ C, i = 1, 2,
. . . ,m be the characteristic roots of the complex polynomial p̃(z) =m

k=0 pkz
k, whose corresponding Schur–Cohn–Fujiwara matrix is de-

fined as K , where pk ∈ C for k = 0, 1, . . . ,m are the coefficients of
the polynomial. Then,

det(K) = |pm|
2m

m
i=1

m
j=1

(1 − zizj), (4)

where Schur–Cohn–Fujiwara matrix is K = pH(S)p(S) − pH(S)p(S),
p(S) = p0I + p1S + · · · + pmSm, and S ∈ Rm×m is the shift matrix
defined by

S =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,

where XH represents the conjugate transpose of the matrix X.

For the sake of the convenience, we define the followingmatrix
C and establish the relationship between the matrices C and K in
Lemma 2.

Lemma 2 (Chen et al., 1995). Let C =


pT(S) (pT(S))H

pT(S) (pT(S))H


, where

pT(S) =


p0 0 · · · 0
p1 p0 · · · 0
...

...
. . .

...
pm−1 pm−2 · · · p0

 ,

(pT(S))H =


pm pm−1 · · · p1
0 pm · · · p2
...

...
. . .

...
0 0 · · · pm

 ,

we have det(K) = (−1)m det(C), where XT represents the transpose
of the matrix X.



Download English Version:

https://daneshyari.com/en/article/695837

Download Persian Version:

https://daneshyari.com/article/695837

Daneshyari.com

https://daneshyari.com/en/article/695837
https://daneshyari.com/article/695837
https://daneshyari.com

