
Automatica 50 (2014) 1626–1631

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Distributed finite-time consensus of nonlinear systems under
switching topologies✩

Chaoyong Li a,1, Zhihua Qu b

a Intelligent Fusion Technology, Inc, Germantown, MD 20876, USA
b Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA

a r t i c l e i n f o

Article history:
Received 16 November 2013
Received in revised form
20 December 2013
Accepted 7 March 2014
Available online 18 April 2014

Keywords:
Information theory
Switching networks
Distributed control
Connectivity
Cooperative control

a b s t r a c t

In this paper, the finite time consensus problem of distributed nonlinear systems is studied under
the general setting of directed and switching topologies. Specifically, a contraction mapping argument
is used to investigate performance of networked control systems, two classes of varying topologies
are considered, and distributive control designs are presented to guarantee finite time consensus. The
proposed control scheme employs a distributed observer to estimate the first left eigenvector of graph
Laplacian and, by exploiting this knowledge of network connectivity, it can handle switching topologies.
The proposed methodology ensures finite time convergence to consensus under varying topologies
of either having a globally reachable node or being jointly strongly connected, and the topological
requirements are less restrictive than those in the existing results. Numerical examples are provided to
illustrate the effectiveness of the proposed scheme.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed consensus is a studydedicated to ensuring an agree-
ment between states or output variables among networked sys-
tems (Qu, 2009). It is well established that common challenges
in this venue are how to achieve consensus with the least possi-
ble topological requirement, and how to achieve it in a timely and
distributive manner. In this regard, distributed finite time consen-
sus became an instant popular topic in the community, especially
with recent advances on finite time stability (Bhat & Bernstein,
2000). Breakthroughs have beenmadewith both continuous (Jiang
&Wang, 2009; Khoo, Xie, &Man, 2009; Li, Du, & Lin, 2011;Ou, Du, &
Li, 2014; Shang, 2012;Wang&Xiao, 2010;Xiao,Wang, Chen, &Gao,
2009) and discontinuous inputs (Cao & Ren, 2012a,b; Chen, Lewis,
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& Xie, 2011; Cortés, 2006; Shi & Hong, 2009; Sundaram & Hadji-
costis, 2007). To be more precise, finite time consensus with con-
tinuous input can be treated as an extension of Bhat and Bernstein
(2000) tomulti-agent systems, and are in general conducted under
time-invariant graph. In particular, it is shown in Jiang and Wang
(2009); Wang and Xiao (2010); Xiao et al. (2009) that the graph
shall be undirected or directed but detailed-balanced in order to
achieve a finite time convergence. This condition is further released
in Shang (2012),where finite time consensus is ensured for digraph
(i.e., directed graph) with a spanning tree. In addition, applications
of continuous finite time consensus have been carried out in for-
mation control of leader–follower multi-agent systems (Li et al.,
2011) and nonholonomic robots (Ou et al., 2014), as well as robust
finite time tracking of multi-robot systems (Khoo et al., 2009).

Due to the highly nonlinear nature of discontinuous input (i.e,
signum/binary protocol), the convergence analysis of networked
systems with discontinuous input is extremely challenging, and
its solution, if possible, is often sophisticated. For instance, Cortés
(2006) pioneered finite time consensus with discontinuous in-
put, under undirected graph, using nonsmooth stability analysis.
In Chen et al. (2011), Filippov solution (Filippov, 1960) is intro-
duced for undirected and directed but detailed-balanced networks
using a binary protocol and pinning control scheme. The most
recent contribution for this topic witnessed the application of a
comparison-based Lyapunov approach in both directed (Cao&Ren,
2012b) and undirected (Cao & Ren, 2012a) networks. In addition,
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discrete finite time consensus of time-invariant network is inves-
tigated in Sundaram and Hadjicostis (2007) using weightedmatrix
with minimal polynomial of the smallest degree. Additionally, Shi
and Hong (2009) focuses on directed and switching network, and
it proves that digraph shall be quasi-strongly connected and con-
tain no direct circle at any interval, in order to ensure a finite time
convergence.

However, it should bepointed out that all of the aforementioned
results are derivedwith rather restrictive topological requirements
(i.e., undirected graph, digraph but detailed-balanced, or digraph
being quasi-strongly connected), finite time consensus of a generic
directed network with switching topologies has not received suf-
ficient attention. In this paper, we attempt to solve this problem
for a class of nonlinear systems under mild assumptions. The main
contribution of this paper is twofold: (i) what are the least conser-
vative topological requirements to ensure a finite time consensus
under directed and switching topologies? Is there a simple argu-
ment to perform the convergence studyof networked systemswith
discontinuous input? In this paper, we attempt to provide answers
to these two questions; and (ii) with the recent advance on net-
work connectivity of a digraph (Qu, Li, & Lewis, 2014),we propose a
distributive control scheme that makes finite time consensus pos-
sible over any jointly strongly connected network.

2. Preliminaries on graph theory

In this paper, we consider a digraph D = (V, E), where V =

{1, 2, . . . , n} and E denote the set of vertices/nodes and the set of
directed edges/paths, respectively. Vertex j is said to be adjacent to
vertex i if there exists a directed edge (j, i) ∈ E with node i being
the head and node j being the tail. Analogously, neighborhood set
Ni ⊆ V of vertex i is {k ∈ V | (k, i) ∈ E}. Without loss of any
generality, adjacency matrix A(D) used in this paper is weighted
and normalized as:

[A(D)]ik =


aik > 0 if k ≠ i, (k, i) ∈ E

1 −


k≠i

aik if k = i

0 otherwise.

(1)

That is, matrix A(D) is chosen to be nonnegative and row-
stochastic. Furthermore, we assume that the nonzero, and hence
positive, weighting factors are all uniformly lower and upper
bounded as a ≤ aij ≤ 1, where 0 < a ≤ 1, for any j ∈ Ni. As
such, the weighted graph Laplacian is

L(D) , I − A(D) (2)

where I is the identity matrix with proper dimension.
GraphD is said to have one globally reachable node if there exists

node i such that there is a directed path from node i to node j for all
j ∈ V with j ≠ i. Graph D is called strongly connected if there
is a directed path between any pair of vertices: a directed path
exists from i to k and so does a directed path from k to i for every
pair of vertices i, k; or every node is a globally reachable node; or
equivalently, Laplacian L(D) is irreducible (Qu, 2009).

According to (2), row sums of Laplacian L(D) are all zero. It
follows that λ1 = 0 is the smallest eigenvalue of L with right
eigenvector ν1 , 1

√
n1n and left eigenvector γ = [γi] ∈ ℜ

n defined
by

LTγ = 0, 1T
nγ = 1, (3)

where 1n , [1 . . . 1]T , and superscript T denotes matrix transpose.
By Perron–Frobenius theorem, all other eigenvalues have positive
real parts if the topology of graph D either has a globally
reachable node or is strongly connected. Moreover, as shown in Qu
et al. (2014), connectivity (and social standings in the connected

network) of D can be described by left eigenvector γ (and its
components). Existing results on γ and its distributed estimation
are summarized into the following lemma; its proof is omitted here
since it merely combines the results in Qu (2009); Qu et al. (2014).

Lemma 1. Consider graph Laplacian L defined by (2) with γ being
its left eigenvector defined in (3). Then, the following results hold:

• if D has a global reachable node, γ is unique and non-negative,
and γi > 0 (e.g., γi = 1) implies that node i belongs to the leader
group2 (e.g., being a sole leader), and γi = 0 means that node i
belongs to the follower group. If D is strongly connected, γi > 0
for all i;

• γ can be estimated distributively at system i by

˙̂γ
(i)

(t) =

n
j=1

aij(t)

γ̂ (j)(t) − γ̂ (i)(t)


(4)

where γ̂ (i)
∈ ℜ

n is the estimate of γ at system i, γ̂ (i)(t0) = ei,
ei ∈ ℜ

n is a vector of zeros except its ith entry being one, and
aij(t) are those defined in (1). Note that γ̂ (i)(t) = ei must be reset
once any topological switching is detected locally (by examining
its corresponding row components of L) and that such resetting
should be propagated to the neighbors.

The following lemma will be used in the subsequent technical
derivations.

Lemma 2. Consider Laplacian matrix L defined in (2) and its left
eigenvector γ defined in (3). Then, for any µ > 0 and t > 0 and
for any D with a globally reachable node,

e∓µLt
= 1nγ

T
+ Γse∓µΛstW T

s ,

where Λs is the Jordan form associated with eigenvalues λ2 up to
λn, Γs ∈ ℜ

n×(n−1) is the resulting matrix of corresponding right
eigenvectors after removing eigenvector 1n associated with λ1(L) =

0, Ws ∈ ℜ
n×(n−1) consists of all the left eigenvectors of A except

for γ .

To consider time-varying topologies, we introduce time se-
quence {tk : k ∈ ℵ

+
} for ℵ

+
= {0, 1, . . . ,∞}, and, without

loss of any generality, graph D(t) is time invariant during inter-
val t ∈ [tk, tk+1), that is, A(t+k ) = A(t−k+1).

3. Finite time consensus under switching topologies with
globally reachable node(s)

Consider the network control problem for n nonlinear systems
of identical dynamics:

ẋi = f (t, xi) + ui, i ∈ V, (5)

where xi ∈ ℜ
m is the state of the ith system, ui ∈ ℜ

m is the neigh-
boring feedback control to be designed, and f (t, xi) denotes the in-
dividual dynamics. For simplicity, m = 1 is set in the subsequent
technical discussion, and the general case of m > 1 can be ad-
dressed analogously.

Function f (t, xi) is assumed to be uniformly bounded with
respect to t and locally uniformly bounded with respect to xi. It is
obvious that system (5) is stabilizable, and hence it can be assumed
without loss of any generality that, for all xi(0) ∈ Ω0 and with
ui ≡ 0, xi(t) is uniformly bounded as xi(t) ∈ Ω and

∥f (t, xi)∥ ≤ ξf , (6)

2 Node i is said to be a leader (or belong to the leader group) if all edges initiated
at node i are tails (or for any j → i, node j is also a leader), node i being a follower
can be defined analogously.



Download English Version:

https://daneshyari.com/en/article/695839

Download Persian Version:

https://daneshyari.com/article/695839

Daneshyari.com

https://daneshyari.com/en/article/695839
https://daneshyari.com/article/695839
https://daneshyari.com

