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a b s t r a c t

This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors
that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The
proposed algorithms generalize previous approaches that were designed to impose these
constraints individually. Similar to previous greedy algorithms for sparse recovery, the
proposed algorithms iteratively identify promising support indices. In contrast to previous
approaches, the support index selection procedure has been adapted to prioritize indices
that are consistent with both the nonnegativity and shared support constraints. Empirical
results demonstrate for the first time that the combined use of simultaneous sparsity and
nonnegativity constraints can substantially improve recovery performance relative to
existing greedy algorithms that impose less signal structure.

& 2016 Published by Elsevier B.V.

1. Introduction

We consider the following inverse problem: given data
matrix YARM�K (possibly noisy), observation/dictionary
matrix ΦARM�N , and noiseless linear measurement model
Y¼ΦX, we seek to recover the unknown matrix XARN�K

by solving the optimization problem:

X̂ ¼ arg min
XAΩ

‖Y�ΦX‖2F ; ðPΩÞ

where ΩDRN�K is an appropriate constraint set. We are
primarily concerned with the case of K41, which is called
the multiple measurement vector (MMV) formulation.

Estimation of X is relatively easy whenever the matrix
Φ has a full column-rank and good condition number, in
which case the standard unconstrained linear least squares
(LLS) solution will be both stable and accurate. However,
in many scenarios of interest, the matrix Φ is poorly

conditioned, and the choice of Ω can have a dramatic
impact on the quality of the estimated X̂. For example, in
the underdetermined case where there are fewer mea-
surements than unknowns (i.e., MoN), there are infinitely
many optimal solutions to PΩ if no constraints are applied
(i.e., setting Ω¼RN�K ). For this case, there will not be a
unique solution to PΩ unless Ω is refined, and different
choices of Ω could lead to very different estimates X̂.

In this work, we propose new greedy algorithms for
solving PΩ under two specific constraints: the columns of
X are both nonnegative (NN) and simultaneously sparse
(SS). Specifically, we derive combined NN and SS (NNS)
extensions of the following existing greedy algorithms
for sparse recovery: orthogonal matching pursuit (OMP)
[1–4], subspace pursuit (SP) [5], CoSaMP [6], and hard
thresholding pursuit (HTP) [7]. The proposed extensions
are also easily generalized to other greedy sparse algo-
rithms like iterative hard thresholding (IHT) [8] which are
based on similar principles. Applications where these
constraints and algorithms may prove useful include
magnetic resonance relaxometry [9,10], kinetic parameter
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estimation in dynamic positron emission tomography [11],
spectral unmixing [12], and sparse NN matrix factori-
zation [13].

Existing work has already demonstrated that combin-
ing sparsity constraints with NN constraints leads to
improved reconstruction results, both when using convex
relaxations [14] and when using greedy algorithms [15].
Extensions of greedy sparse recovery algorithms such as
OMP, SP, and HTP to the SS context also already exist
[16–24]. However, to the best of our knowledge, there are
no previously proposed algorithms for combining NN with
SS. This paper fills that gap by proposing a new family of
greedy NNS algorithms, and by demonstrating empirically
that combined NNS constraints can substantially improve
recovery performance relative to the individual use of NN,
sparsity, or SS constraints.

This paper is organized as follows. Prior work related to
NN constraints and SS constraints is discussed in Section 2.
The details of our proposed NNS greedy algorithms are
described in Section 3. Theoretical considerations for the
proposed algorithms are discussed in Section 4. The simu-
lations we use to evaluate the proposed algorithms are
described in Section 5, while the corresponding results are
presented and analyzed in Section 6. An application example
is described in Section 7. Finally, we provide additional dis-
cussion in Section 8 and conclusions in Section 9.

2. Background

2.1. Nonnegativity constraints

Formally, we define the set of NN signals as

Ωþ 9
XARN�K : xnkZ0; n¼ 1;…;N

k¼ 1;…;K

( )
; ð1Þ

where xnk is the entry in the nth row and kth column of X.
NN signals are encountered in a variety of applications,
due to the fact that certain physical and mathematical
quantities are inherently NN. For instance, Euclidean dis-
tances, image intensities, signal powers, probabilities,
photon counts, and volume fractions are all examples of
positive-valued quantities, with negative values being
unphysical and difficult to interpret. The use of NN con-
straints is therefore essential in certain applications, and
has a long history: see [25] for a review. Interestingly, it
has been demonstrated theoretically that NN constraints
alone can lead to unique and robust solutions to PΩ when
Φ is underdetermined, under appropriate additional con-
ditions on Φ and Y [26–28]. In addition, the NN least
squares (NNLS) problem (the common name for PΩ
combined with constraint set Ωþ) is a simple convex
optimization problem for which efficient algorithms
already exist [25].

2.2. Sparsity and simultaneous sparsity constraints

Single measurement vector (SMV) sparsity (i.e., sparsity
for the case when K¼1) has also emerged as a popular
constraint for solving PΩ in underdetermined settings. This

popularity is based on three main observations: (i) most
real-world signals possess structure that allows them to be
sparsely represented in an appropriate basis or frame; (ii)
if X is sufficiently sparse and the underdetermined Φ
matrix has appropriate subspace structure, then various
sparsity-constrained solutions to PΩ are theoretically
guaranteed to yield stable and accurate estimates of X
[29]; and (iii) even when theoretical guarantees are not
applicable, the use of appropriate sparsity constraints
allows valuable prior information to be incorporated into
the estimation process, generally yielding better results
than an unconstrained reconstruction would.

We define the set of S-sparse SMV signals as

ΩS9 XARN�1: jΛS Xð ÞjrS
� �

; ð2Þ
where the support set ΛS Xð Þ is defined as

ΛS Xð Þ9 nA 1;…;Nf g: xn1a0f g ð3Þ
and jΛS Xð Þj denotes its cardinality. The cardinality of this
set equals the number of nonzeros in X, such that ΩS is the
set of all vectors that possess no more than S nonzero
entries.

Rather than just considering standard SMV sparsity,
this work focuses on SS, a specific form of structured MMV
sparsity (SS is also sometimes called joint sparsity, group
sparsity, or multi-channel sparsity). In SS, it is assumed
that the columns of X are each sparse and share a common
support set. Formally, we define the set of simultaneously
S-sparse signals as

ΩSS9 XARN�K : jΛSS Xð ÞjrS
� �

; ð4Þ
where the shared support set ΛSS Xð Þ is defined as

ΛSS Xð Þ9 nA 1;…;Nf g: xnka0 for some k
� �

: ð5Þ
The cardinality of ΛSS Xð Þ is equal to the number of rows of
X that are not identically zero, such that ΩSS is the set of all
matrices XARN�K possessing no more than S nonzero
rows. Unsurprisingly, methods that impose SS are
empirically more powerful than methods that solely
impose sparsity without enforcing structured sparsity
information [30].

Unlike the easy-to-solve NNLS optimization problem,1

sparsity-constrained optimization problems generally
have combinatorial complexity. As a result, it is common in
the literature to either consider greedy algorithms [16–
20,22–24] or convex/nonconvex relaxations of the sparsity
constraint [17,18,32–35]. We focus on greedy approaches.

2.3. Greedy sparse algorithms

While greedy optimization algorithms can potentially
be trapped at suboptimal local minima, they are frequently
less computationally demanding than relaxation-based
algorithms, and several have optimality guarantees under
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1 Interestingly, the classical active-set NNLS algorithm of Lawson and
Hansen [31] has strong algorithmic similarities to NN-OMP [15], a greedy
algorithm designed for solving PΩ with Ω¼Ωþ \ ΩS . However, while the
active-set NNLS algorithm is guaranteed to optimally solve PΩ, the
optimality of the result produced by NN-OMP depends on the char-
acteristics of Φ.
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