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a b s t r a c t

In this note, a novel tunable bandpass filter/phase shifter implementation (with a Hilbert
transformer as a special case) is proposed. The filter can also be used to synthesize a
bandpass analytic signal from a real-valued signal. The novelty is the simple, yet elegant
implementation that exploits the even and odd symmetry of the in-phase and quadrature
carrier modulation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In some applications one needs to shift the phase of signal
components by an angle θ without altering their amplitudes;
a Hilbert transformer is an example. An ideal Hilbert trans-
former is an all-pass linear network with a phase response of
�π=2 at positive frequencies and π=2 at negative frequencies.
Therefore, all real sinusoidal signals get phase shifted by 90°
when passed through a Hilbert transformer. In practice, Hil-
bert transformers are typically realized as filters or using
Fourier transform on blocks of data in the following way:
(1) a truncated or windowed version of the ideal Hilbert
transform impulse response, hðtÞ ¼ 1=ðπtÞ, (in MATLAB) is
used as an impulse response to filter the input signal, or
(2) given a block of N samples of a signal, its Hilbert trans-
form is calculated using the fast Fourier transform (FFT)
algorithm. However, in many practical applications one needs
to compute the Hilbert transform of an indefinitely long
sequence of signal samples at various spectral regions. Such
applications include single sideband communication systems
[4], defect diagnosis in rotating machinery [7], parametric

coding of speech spectra [1,2], and using instantaneous fre-
quencies to identify speakers [3]. For example, in a phase
vocoder [2] Hilbert transform is typically computed in many
bandpass regions of the signal spectrum. In this note, we
propose a filter implementation which uses in-phase and
quadrature modulation by a sinusoidal carrier to obtain a
tunable bandpass filter and phase shifter, with Hilbert
transformer as a special case. We also show how to use this
phase shifter to build an analytic signal generator. The pro-
posed method closely resembles Weaver's method of single
sideband modulation [8].

2. Bandpass phase shifter

The filter structure shown in Fig. 1 is well known and
widely used in communication systems. However, its use
as a phase shifter/Hilbert transformer or analytic signal
generator is not widely appreciated. The input signal x(t) is
assumed to be real-valued. It is typically a baseband signal
(like speech) with a bandwidth of ωb). The overall goal of
the proposed method is to decompose x(t) into N adjacent
spectral regions spanning the frequency range from zero to
ωb using N bandpass filters. The output of these filters may
then be converted to analytic signals, whose envelopes
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and instantaneous frequencies can be used to represent
the original signal x(t). This is known as a Phase Vocoder
[2] in speech processing.

Fig. 1 shows the structure of a bandpass filter centered
at ωc. The low-pass filter (LPF) sandwiched between the
multipliers has a real-valued impulse response and its
frequency response is denoted by HðωÞ. The LPF's cut off
frequency, ω1, is assumed to be a fraction of the original
bandwidth, ωb, of the signal x(t), and is less than ωc

(ωb4ωc4ω1). The sine and cosine signals with frequency
ωc and phase θ1 are used to complex demodulate the input
signal to produce q1ðtÞ and q2ðtÞ. After low pass filtering by
HðωÞ these signals are remodulated or upconverted by sine
and cosine signals with the same frequency ωc but with a
different phase θ2. To show the phase shifting properties of
this structure, let us examine the frequency domain
representations of the output y(t) and the intermediate
signals: p1ðtÞ, p2ðtÞ, q1ðtÞ and q2ðtÞ shown in Fig. 1. By
inspection, we can write the following frequency domain
representations of these signals:

P1 ωð Þ ¼ 1
2 ejθ1Xðω�ωcÞþe� jθ1XðωþωcÞ
h i

;

P2 ωð Þ ¼ 1
2j ejθ1Xðω�ωcÞ�e� jθ1XðωþωcÞ
h i

;

Q1 ωð Þ ¼ 1
2 ejθ1Xðω�ωcÞþe� jθ1XðωþωcÞ
h i

H ωð Þ;

Q2 ωð Þ ¼ 1
2j ejθ1Xðω�ωcÞ�e� jθ1XðωþωcÞ
h i

H ωð Þ:

The cut off frequency ω1 of the LPF HðωÞ is such that
ωc4ω1. The Fourier transforms of y1ðtÞ and y2ðtÞ are as
follows:

Y1 ωð Þ ¼ 1
4 ejðθ2 þθ1ÞXðω�2ωcÞHðω�ωcÞ
h

þejðθ2 � θ1ÞXðωÞHðω�ωcÞþejð�θ2 þθ1ÞXðωÞHðωþωcÞ
þe� jðθ2 þθ1ÞXðωþ2ωcÞHðωþωcÞ

i
;

Y2 ωð Þ ¼ �1
4 ejðθ2 þθ1ÞXðω�2ωcÞHðω�ωcÞ
h

�ejðθ2 �θ1ÞXðωÞHðω�ωcÞ�ejð� θ2 þθ1ÞXðωÞHðωþωcÞ
þe� jðθ2 þθ1ÞXðωþ2ωcÞHðωþωcÞ

i
: ð1Þ

The spectrum of the output signal, YðωÞ ¼ Y1ðωÞþY2ðωÞ,

simplifies to the following:

Y ωð Þ ¼ 1
2 ejΔθHðω�ωcÞþe� jΔθHðωþωcÞ
h i

X ωð Þ; ð2Þ

where Δθ¼ θ2�θ1. Notice that the terms containing
Xðω72ωcÞ in Y1ðωÞ and Y2ðωÞ cancel each other indepen-
dent of the phase values θ1 and θ2. Therefore the overall
frequency response of the entire filter in Fig. 1, denoted by
H0ðωÞ ¼ YðωÞ=XðωÞ, is given by the following expression:

H0 ωð Þ ¼ 1
2 ejΔθHðω�ωcÞþe� jΔθHðωþωcÞ
h i

: ð3Þ

Clearly, H0ðωÞ is a bandpass filter with frequency response
centered at ωc with bandwidth 2ω1. Bandpass filter reali-
zations as in Fig. 1 with θ1 ¼ θ2 ¼ 0 can be found in text
books (e.g refer to [5, p. 176]). The purpose of this note is to
point out that the filter structure in Fig. 1 can be used to
rotate the phase of signal components within the pass
band of H0ðωÞ by any desired angle Δθ. Hence it can also be
used as a bandpass phase shifter, especially for discrete-
time implementations. Further, if we choose Δθ to be π=2,
it becomes a “bandpass Hilbert transformer.” This can also
be used to generate an analytic signal as shown in the next
section.

Let us consider an example to examine the output and
intermediate signals for a specific input xðtÞ ¼ A cos ðω0tÞ.
Let ω0 be such that jωc�ω0joω1 (where H'(ω) is centered
at ωc and ω1 is the cut off frequency of H(ω) shown in
Fig. 1). That is, the tone x(t) lies in the passband of the filter
H0ðωÞ. Then
p1 tð Þ ¼ A cos ω0tð Þ cos ωctþθ1ð Þ

¼ A
2

cos ðω0tþωctþθ1Þþ cos ðω0t�ωct�θ1Þ½ �;
p2 tð Þ ¼ A cos ω0tð Þ sin ωctþθ1ð Þ

¼ A
2

sin ðω0tþωctþθ1Þ� sin ðω0t�ωct�θ1Þ½ �: ð4Þ

Assuming an ideal LPF, HðωÞ, with cutoff frequency ω1oωc,
the LPF outputs are q1 tð Þ ¼ A

2 cos ðω0t�ωct�θ1Þ½ � and
q2 tð Þ ¼ A

2 � sin ðω0t�ωct�θ1Þ½ �. Then the signals y1ðtÞ and
y2ðtÞ are

y1 tð Þ ¼ A
2

cos ðω0t�ωct�θ1Þ cos ðωctþθ2Þ½ �

¼ A
4

cos ðω0t�θ1þθ2Þþ cos ðω0t�2ωct�θ1�θ2Þ½ �;

y2 tð Þ ¼ A
2
� sin ðω0t�ωct�θ1Þ sin ðωctþθ2Þ½ �

¼ A
4

cos ðω0t�θ1þθ2Þ� cos ðω0t�2ωct�θ1�θ2Þ½ �: ð5Þ

Therefore the output y(t) is

y tð Þ ¼ y1 tð Þþy2 tð Þ ¼ A
2
cos ω0t�θ1þθ2ð Þ: ð6Þ

Note that cos ðω0t�2ωct�θ1�θ2Þ terms cancel irrespec-
tive of θ1 and θ2. Additionally the phase of x(t) is rotated by
Δθð ¼ θ2�θ1Þ.

2.1. Analytic signal generator

Consider the two bandpass filter structures shown in
Fig. 2a and b that are derived from Fig. 1. We refer to them as
“Cos–Cos” and “Cos–Sin” filters respectively. We coined these

x(t) y(t)
+

Cos(ωct+θ1) Cos(ωct+θ2)

Sin(ωct+θ1) Sin(ωct+θ2)

q1(t)

p2(t) q2(t)

p1(t) y1(t)

y2(t)

H(ω)

H(ω)

H’(ω)
Fig. 1. A tunable bandpass filter (BPF). Frequency tuning is achieved by
varying ωc, while the phase of the output signals can be altered using the
parameters θ1 and θ2. HðωÞ could be any low pass filter, with a cutoff
frequency ω1 such that ω1 o ωc and is a fraction of the input signal
bandwidth ωb.
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