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a b s t r a c t

Structurally random matrices (SRMs) are a practical alternative to fully random matrices
(FRMs) when generating compressive sensing measurements because of their computa-
tional efficiency and their universality with respect to the sparsifying basis. In this work
we derive the statistical distribution of compressive measurements generated by various
types of SRMs, as a function of the signal properties. We show that under a wide range of
conditions, that distribution is a mixture of asymptotically multi-variate normal compo-
nents. We point out the implications for quantization and coding of the measurements
and discuss design considerations for measurements transmission systems. Simulations
on real-world video signals confirm the theoretical findings and show that the signal
randomization of SRMs yields a dramatic improvement in quantization properties.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Compressive sensing [1] is concerned with determining
a signal xAℝn from a vector of measurements

y¼Φx ð1Þ
where ΦAℝm�n, m⪡n, is a sensing matrix, and x is k-sparse
representation in the column space of a sparsifyer Ψ ,

x¼Ψζ; ‖ζ‖0rk; ð2Þ
where Ψ is an orthogonal or a tight frame matrix and ‖ζ‖0
denotes the number of non-zero entries in ζ . If ΦΨ meets
certain conditions, ζ and hence x can be reconstructed
from y by solving the constrained minimization problem

min ‖ζ‖1 s:t: y¼ΦΨζ ð3Þ

Other results in the same vein extend these results to
compressible signals (signals which can be approximated
by sparse signals), or provide error bounds on the recon-
structed solution when the measurements contain noise.
(In this case (3) may also be modified to account for the
noise.)

1.1. Sensing matrix design

Various design methods attempt to generate a sensing
matrix Φ that enables correct reconstruction of x from a
small number of measurements in a computationally
efficient way. Generally this goal is achieved only with
very high probability (w.h.p.): either Φ is a random matrix
and w.h.p., the selected instance of Φ enables correct and
efficient reconstruction of every possible ðx; ζÞ pair which
satisfy (2); or x and ζ are random signals which satisfy (2)
and Φ is deterministic such that the pair ðx; ζÞ can be
reconstructed efficiently w.h.p. [2]. In this paper, we are
interested in the first option.
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A fully random matrix (FRM) is a matrix whose entries
are independent, identically distributed (IID) Gaussian or
Bernoulli random variables (RVs) [3,4]. If mZO k logð
ðn=kÞÞ, then for any given Ψ , w.h.p., ΦΨ is such that every
x and ζ which satisfy (2) can be reconstructed by solving
(3). FRMs are universal, that is, the design of Φ is inde-
pendent of Ψ , hence the choice of sparsifier can be
deferred to the reconstruction stage, which is of significant
practical importance. However, because of their comple-
tely unstructured nature, FRMs are computationally
unwieldy in large scale applications since the random
matrix needs to be both computed and stored.

Randomly sampled transforms (RST) address the com-
putational complexity problem by imposing structural
constraints on the randomness. Let

Φ¼
ffiffiffiffiffiffiffiffiffiffi
n=m

p
SW

where WAℝn�n is a square, orthonormal matrix having a
fast transform, and SAℝm�n is a random entries selection
matrix, that is, a matrix whose rows are selected randomly,
with uniform distribution, from the rows of In, the n� n
identity matrix. Φx can then be computed efficiently by
calculating the fast transform Wx and selecting a random
subset of the transform coefficients. RSTs guarantee a
correct solution, w.h.p., if

mZO μ2ðW ;Ψ Þk log n
� � ð4Þ

where μðW ;Ψ Þ, the mutual coherence of Wand Ψ , is

μðW ;Ψ Þ9 ffiffiffi
n

p
max

1r irm; 1r jrn
wiψj

�� ��= ‖wi‖2‖ψj‖2
� �

where wi, ψj are the ith row and jth column of W , Ψ ,
respectively [5]. Since 1rμðW ;Ψ Þr ffiffiffi

n
p

, we can choose
m⪡n which satisfies (4) only if W is selected so that
μðW ;Ψ Þ is small. Therefore, RSTs are not universal.

The universality issue was addressed by the introduc-
tion of structurally random matrices (SRM) [6,7]:

Φ¼
ffiffiffiffiffiffiffiffiffiffi
n=m

p
SWR ð5Þ

where S, W are as above and RAℝn�n, the randomizer, is a
random matrix. Hence

Φx¼
ffiffiffiffiffiffiffiffiffiffi
n=m

p
SW Rxð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
n=m

p
SW RΨð Þζ:

Therefore, a SRM with a given sparsifier Ψ behaves as
the RST

ffiffiffiffiffiffiffiffiffiffi
n=m

p
SW with the random sparsifier RΨ . If RΨ

and W are mutually incoherent w.h.p., then SRMs are
universal, and the known results for RSTs with incoherent
sparsifiers (e.g. performance with compressible signals or
noisy measurements) hold w.h.p.

Two types of randomization were proposed: Local
randomization (LR), where each entry of x is multiplied
by 71 with equal probability; and global randomization
(GR), where the entries of x are randomly shuffled. Both
forms are computationally simple and were shown, for a
large class of transforms W , to be universal [7]. The
universality of LR was extended in [9] to the more general
case where

ffiffiffiffiffiffiffiffiffiffi
n=m

p
SW in (5) is replaced by any matrix with

the restricted isometry property (RIP).
Other methods were also proposed for constructing

universal and computationally efficient sensing matrices,
such as Random convolution (RC) [8].

1.2. Quantization and coding of measurements

Many application of compressive sensing, e.g. video
surveillance and streaming [10–16] involve sending the
measurements for processing over a communication chan-
nel. The transmission of measurements requires a coding
scheme, which entails source coding that is typically
implemented by quantization followed by channel coding
of the quantization codewords.

Conventional media coding standards are efficient over
a wide range of input signals and operating conditions.
One of the keys to this robustness is the usage of various
signal-adaptive techniques in order to control the bit rate
and improve performance. These techniques are applied
before, during, and after quantization. For example, a
linear prediction [17,18] model may be estimated for the
signal and the quantization may be performed on the
prediction error, which reduces the bit rates needed to
achieve specific quantization accuracies; the granularity of
the quantizer may be varied according the signal content;
and one out of several possible variable length coding
schemes may be selected to achieve low rate lossless
coding of the quantization codewords. The parameters of
the linear prediction model, the quantizer granularity, and
the lossless coding scheme need to be shared with the
decoder, and hence they are encoded and sent as side
information. Since the side information is critical for the
decoding of the signal as a whole, it is typically encoded
with higher accuracy and, in noisy channels, with better
error protection, than the rest of the data. The amount of
data in the side information is very small, hence the bit
rate overhead caused by sending it is usually negligible in
comparison to the performance achieved by it.

The preferred coding scheme for compressive measure-
ments depends on a variety of factors, but it is invariably
based on assumptions about the probability distribution of
the measurements, which is determined by the type of
sensing matrix used. Furthermore, applying any of the
signal-adaptive techniques described above requires hav-
ing a parametric model where this distribution is char-
acterized by parameters estimated from the signal and
transmitted to the decoder as side information.

The quantization of compressive measurements has
recently received significant attention. Dai et al. [19,20]
studied the effect of quantization on reconstruction accu-
racy with various quantizer designs and provided asymp-
totic boundaries on the rate-distortion function when
quantization is followed by Huffman coding [20]. The
efficacy of uniform vs. non-uniform scalar measurement
quantization was compared specifically for video signals in
[14,21]. Unlike all other quantizer designs we reviewed,
the quantizer of Venkatraman and Makur [14] is signal-
adaptive: its operation is controlled by the variance of the
measurements in each frame, which is sent to the decoder
as side information. A quantizer optimized for compressed
sensing reconstruction is presented in [22]. Laska et al.
studied the effect of saturation [23], the trade-off between
the number of measurements and quantization accuracy
[24] and the extreme case of 1-bit quantizers [24–26].
Modifications to the reconstruction algorithms to address
quantization effects were proposed in [23,26,27]. In all
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