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pointwise measures of the quantity being emitted. The solution we propose is based on computing the
gradient - and higher-order derivatives such as the Hessian - from Poisson integrals: in opposition to
other solutions previously proposed, this computation does neither require specific knowledge of the

solution of the diffusion process, nor the use of probing signals, but only exploits properties of the PDE
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describing the diffusion process. The theoretical results are illustrated by simulations.
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1. Introduction

The problem of source localization consists in finding, by one
or several mobile or fixed sensors arrays, possibly cooperating
with each other, the point or the spatial region from which a
quantity of interest is being emitted. Source-seeking agents can be
fixed sensors, that collect and exchange some information about
the signal field and try to identify the position of the source (or
the smallest region in which it is included), or moving devices
equipped with one or more sensors, that physically reach the
source in an individual or cooperative way.

This research area is attracting rapidly increasing interest, in
particular in applications where the agents have limited or no
position information; for instance, source localization is relevant
to many applications of vapor emitting sources (Porat & Nehorai,
1996), such as explosive detection, drug detection, sensing leaking
or hazardous chemicals, pollution sensing and environmental
studies. Sound source localization (Zhang, Floréncio, Ba, & Zhang,
2008) is pertinent for intelligent conference call systems that
identify the speakers to improve sound and video quality. Other
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applications also include heat source localization, vent sources
in underwater field, and medical applications to explore internal
brain activity by using surface sensors.

1.1. Overview of source-seeking

Avariety of methods exists in the literature to treat the problem
of source localization and related issues. Many techniques deal
with formulations associated with isotropic diffusion processes,
and several identification methods have been devised to estimate
the source position (Matthes, Groll, & Keller, 2004; Porat & Nehorai,
1996); more fundamental problems, such as source identifiability
and optimal sensor placement, are discussed in depth in Khapalov
(2010). This approach, that can be viewed as an inverse problem
formulation for partial differential equations, has the drawbacks
of a heavy computation, and the requirement of the explicit
knowledge of the closed-form solution of the PDE describing the
diffusion process.

A different line of research consists in reconstructing an
approximation of the gradient field of the measured quantity,
and moving towards the source along the gradient direction;
this can be done either directly, via a method developed for
the particular problem at hand, or implicitly, by estimating the
gradient via different techniques. The first contribution making use
of an explicit ad hoc gradient computation can be found in Burian,
Yoerger, Bradley, and Singh (1996), where the agent obtains
different measurements of a hydrothermal plume and performs a
least-square gradient estimation; in Baronov and Baillieul (2008)
unicycle vehicles are driven towards a source by a control law
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related to the geometry of the diffusion process. The gradient is
estimated in an implicit way in Wu, Couzin, and Zhang (2012),
where the authors take inspiration from fish swarms to design an
algorithm adapted also for seeking the source of a turbulent flow
(Wu, Chang, & Zhang, 2013).

In contrast to the previously mentioned methods, the so-called
“extremum seeking” methodology is not based on any particular
structure or knowledge of the diffusion solution; the method only
applies for moving sensors, as it relies on the idea of collecting
rich enough information to approximate the gradient through
the use of a periodic probing signal or an oscillatory motion.
Extremum-seeking has been applied in a wide range of engineering
applications; adaptations of this idea to the problem of source
localization are presented in Ghods (2011) and references therein,
where the control of the nonholonomic unicycle is performed first
on the forward velocity, then on angular one, while in the last
case the authors combine the two strategies in an elegant way.
Extremum-seeking has been used also in some contributions on
3D source localization (Cochran, Ghods, & Krsti¢, 2008; Cochran,
Siranosian, Ghods, & Krsti¢, 2009).

Another technique worth mentioning is given by stochastic
source-localization. Stochastic methods are based on a function
that describes the probability rate of a change of direction, and
often mimic biological behaviors observed for example on fish
swarms or in bacteria movements. A contribution in this direction
is the Optimotaxis (Mesquita, Hespanha, & AAstrom, 2008), where
the vehicles move with a random motion similar to Escherichia
coli’'s “run and tumble”; this method can be also used with
nonquadratic-like signal profiles, including the ones with multiple
maxima. Another contribution can be found in Menon and Ghose
(2012), where the authors localize a source of polluting substance
and also track the boundary of the contaminated region.

All the methods discussed above have been also used to
develop a distributed approach to the source-localization problem.
One of the first in this direction is (Moreau, Bachmayer, &
Leonard, 2003), where it is assumed that each vehicle, modeled
with simple integrator dynamics, can measure the full gradient,
and the authors develop a twofold algorithm with a gradient-
descent term and inter-vehicle forcing terms. Extremum-seeking
is applied in a collaborative manner in Ghods and Krsti¢
(2010), in a 1-dimensional framework. Two distributed stochastic
source localizations are in Sahyoun, Djouadi, and Qi (2010),
where a group of chemical sensors takes measures of a plume
concentration values to estimate the source position via a
stochastic approximation technique, and in Rabbat and Nowak
(2004), in which the authors use the sensor measurements to
estimate the model parameters of the concentration plume. A
collaborative control law to steer a fleet of AUVs (autonomous
underwater vehicles) to the source of a signal distribution using
only direct signal measurements by a circular formation of agents
is presented in Brifion Arranz, Seuret, and Canudas de Wit (2011)
and Moore and Canudas de Wit (2010); these ideas are formalized
and extended in Canudas de Wit, Garin, Fabbiano, Rouchon, and
Rousseau (2012). Some recent works using a distributed approach
deal in particular with acoustic source localization; an example
is (Yong, Qing-Hao, Yuxiu, & Ming, 2012), in which the authors
solve the so-called “energy-based source localization” problem,
i.e., detecting the presence of a source emitting an acoustic signal
that attenuates in space by a field of sensors able to measure the
signal’s energy, by proposing a new optimization method called
“projection onto the nearest local minimum”.

1.2. Main paper contribution

We present here a new method, suitable for a single-vehicle
n-dimensional source localization, based on a direct gradient

computation. This technique does not require specific knowledge
of the solution of the diffusion process, but only exploits properties
of the PDE that generates the diffusion process, and can compute
the gradient direction from the pointwise concentration samples
collected by multiple sensors arranged on a spherical surface, with
a small computation load; it does not make use of a probing signal
either. We note also that the vehicle does not need any position
information, since the heading references can be computed with
respect to the vehicle’s orientation in its local frame.

The gradient computation, necessary to perform the source
search, is based on the Poisson integral formula; this approach
allows also for higher-order derivatives computation (e.g., the
Hessian), which can be useful to implement different control
laws. Moreover, this is intrinsically high-frequency filtering, since
derivatives are computed using integrals, and it makes the method
less sensitive to measurement noise.

The approach is based on the assumption, justified for isotropic
diffusive sources in steady-state, that the diffusion process is
described by the Laplacian PDE. The paper formalizes and extends
previous ideas from Brifién Arranz et al. (2011) and Moore and
Canudas de Wit (2010), where the gradient has been approximated
by the sum of pointwise measurements around a circle weighted
by the position vector of each sampler with respect to its center of
rotation.

2. Problem formulation

Before starting we fix here some notation we will use
throughout the paper. A point in an n-dimensional space is
represented by the vector ¥ = [x; X2 --- x,]"; Vf is the gradient
of the function f,and V2 = Y | 3?/9x? is the Laplacian operator.
For an open set §2, d§2 denotes its border, and 2 =QUIR
its closure. B, (c) indicates the ball of radius r centered in c; the
area of the surface of B.(c) C R" is given by w,r""!, w, being
the area of the corresponding unit sphere, and dSg, () denotes
the infinitesimal element of surface of B, (c). Integrals of vector-
or matrix-valued quantities are intended as entry-wise integrals.
Finally, [a] denotes the rounding of g, i.e., the integer closest to a.

We consider steady-state behaviors of homogeneous diffusion
processes caused by an isotropic source emitting at a constant rate.
Such a process is governed by the well-known diffusion equation

of (x,t)
at

—kV3f(x,t) =0, Vxe,t>0, (1)
where f is the concentration variable, k is a diffusion coefficient,
and 2 C R" (see Folland, 1995). In particular, as depicted in
Fig. 1(a), we consider the region of interest £2 C R" as a connected
bounded set 2 = 2 U §2,, where £2; is the connected bounded set
that identifies the source, and therefore we have that 32 = 92 U
082;. The values of f on the inner boundary 0 §2, are imposed by the
source, so we can assume that values of f on 92; are higher than
the ones on 0£2. As we will see below, we have that max f (x) € 952,
that means, for our previous consideration, that it lies on 9 £2; our
source localization problem is then mathematically equivalent to
the problem of finding the maximum of f.

Once the steady-state has been reached, supposing that the
source is still emitting at a constant rate (this happens in many
cases of practical interest, e.g., in a heating process, or in the
dispersion of a chemical substance), or that possible source
variations are slow in the time-scale of interest, the diffusion
equation (1) reduces to the Laplace equation

Vi(x) =0, Vxe, (2)

whose solutions are called “harmonic”. These functions have many
properties; among them, they satisfy the maximum principle, which
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