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ABSTRACT

This paper presents a formation control and synchronization method that utilizes adaptive network
topologies for a class of complex dynamical networks comprised of a large number of highly-nonlinear
Euler-Lagrange (EL) systems. A time-varying and switching network topology, constructed by the adap-
tive graph Laplacian matrix, relaxes the standard requirement of consensus stability, even permitting
exponential synchronization on an unbalanced digraph or a weakly connected digraph that can sporadi-
cally lose connectivity. The time-varying graph Laplacian matrix is adapted by an adaptive control scheme
based on relative positions and errors of synchronization and tracking. The adaptive graph Laplacian is
integrated with a phase synchronization controller that synchronizes the relative motions of EL systems
moving in elliptical orbits, thereby yielding a smaller synchronization error than an uncoupled tracking
control law in the presence of bounded disturbances and modeling errors. An example of reconfiguring
hundreds of spacecraft in Low Earth Orbit shows the effectiveness of the proposed phase synchronization
controller for a large number of complex EL systems moving in periodic elliptical orbits.
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1. Introduction

This paper is concerned with complex dynamical networks
comprised of nonlinear Euler-Lagrangian (EL) systems, which of-
ten represent the dynamics of robots and spacecraft more accu-
rately. Because of the nonlinear terms of an EL system, such as
nonlinearly-coupled inertia matrices, sophisticated nonlinear con-
trol methods along with rigorous stability proofs should be used.
Another aspect of complexity considered in this paper is the di-
mensionality or structural complexity of networks. The present pa-
per is motivated by such a real-world problem of controlling and
reconfiguring a large number of spacecraft (100 s-1000 s) in the
presence of external disturbances (Chung & Hadaegh, 2011; Mor-
gan et al., 2012). The objective of this paper is to study the problem
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of generating stable adaptive network topologies that can reduce
the complexity of controlling a large network comprised of coupled
EL systems.

1.1. Problem statement and contribution

Let us visualize multiple rigid bodies following some periodic
orbit as shown in Fig. 1. Oftentimes, it is more useful to maintain
a formation shape by enforcing some position (phase) differences
than exactly following a desired trajectory (e.g., synthetic aper-
tures in space (Chung & Hadaegh, 2011)). Hence, this paper solves
the problem of combining phase synchronization with tracking
control for a large number of coupled EL systems. Tracking con-
trol with exponential stability ensures that each EL system (q;)
yields bounded errors with respect to its desired trajectory or (Vvir-
tual or real) leader qq;(t) in the presence of bounded disturbances
and modeling errors. Phase synchronization in this paper means
maintaining a desired phase difference between neighboring EL
systems. Then, the objective is to ensure that the phase synchro-
nization errors are smaller than tracking errors, resulting in

lim ||q; — f(qi, )|l < lim [lq; — qujll <4, A >0 (1)
t—00 t—0o0

where f(qy, ¢) rotates the position of a neighbor (qy) by the angle
¢. This paper presents a strategy of making phase synchronization
(q; — f(qy, ¢)) occur faster than tracking (q; — qi) on an adap-
tive graph.
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The standard synchronization problem (q; — q) of EL sys-
tems has been studied without tracking control (Chopra & Spong,
2006; Ren, 2009). However, such a controller without a leader or
desired trajectory might result in undesirable drifting of the syn-
chronized states. The exact synchronization (q; = qx and ¢ = 0)
of EL systems, combined with trajectory tracking, was studied first
by Rodriguez-Angeles and Nijmeijer (2004). However, their work
did not consider network graphs that permit other communica-
tion topologies than all-to-all coupling, which is a prohibitive re-
quirement for a large network. Moreover, the controller required
acceleration terms. In contrast, our prior work (Chung & Slotine,
2009) presented a generalization of the combined synchronization
and tracking control of EL systems on a network graph. Tracking
control of a (virtual) leader adds another layer of robustness to
multi-agent consensus in case the network graph loses connectiv-
ity sporadically. Recent papers followed the combined tracking and
synchronization framework for networked EL systems (e.g., Dong
(2011), Liu and Chopra (2010) and Nuno, Ortega, Basafiez, and Hill
(2011)). However, the aforementioned prior work neither consid-
ered the problem formulation (1) in which phase synchronization
takes precedence over tracking nor studied an adaptive network
topology.

Why directed graphs? In this paper, directed graphs (digraphs)
are preferred over undirected graphs since each directed edge
realistically represents a heterogeneous capability of communica-
tion or relative sensing (Smith & Hadaegh, 2007) of each mem-
ber. Whereas much of prior work used undirected graphs for their
network models, real-world complex networks (e.g., biological cir-
cuits) are mostly directed graphs (Liu, Slotine, & Barabasi, 2011).
However, all the results in this paper hold vacuously for undirected
graphs since they are balanced digraphs. Next, we state the main
contributions of this paper.

Contribution 1: Adaptive graph Laplacian. The EL systems are
coupled through a diffusive term (e.g., q; — qi) in each controller,
whose coupling gains are computed by an adaptive control law.
Then, the information flow in the network is epitomized by the
adaptive graph Laplacian matrix, whose element is either nonzero
or zero, depending on whether there is a directed communication
link between each pair of the agents. For a large network, the
graph Laplacian matrix tends to be sparse. Most prior work used
a constant or switching Laplacian matrix, comprised of fixed gains
for each network topology. Consensus stability of linear systems
on time-varying network topologies were investigated in Hong,
Hu, and Gao (2006), Ji and Egerstedt (2007), Kim and Mesbahi
(2006) and Ren and Beard (2005). Another prior work studied
the pose synchronization of rigid bodies on switching networks
(Hatanaka, Igarashi, Fujita, & Spong, 2012). Also, random graphs
(Hatano & Mesbahi, 2005; Tahbaz-Salehi & Jadbabaie, 2010) could
be employed to handle a large network. However, most prior work
studied the effects of switching or time-varying topologies on
the consensus stability without suggesting a systematic method
of automatically determining the network topology of a large
complex network.

In contrast with prior work, this paper uses an adaptive con-
trol scheme to automatically compute a time-varying network
topology. In other words, the adaptive graph Laplacian method
determines not only which neighbors each member should com-
municate with, but also the time-varying elements of the Lapla-
cian matrix (Chang, Chung, & Blackmore, 2010; Chung, Chang, &
Hadaegh, 2011). Hence, the proposed adaptive Laplacian differs
from the method of adapting the scalar coupling strength of a
fixed graph used in Yu, Chen, and Lu (2009). Further, the use of
integration-based adaptation, based on relative positions and syn-
chronization/tracking errors, makes the proposed adaptive Lapla-
cian differ from other methods of time-varying Laplacians that
depend only on relative distances (Cucker & Smale, 2007; Ji &
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Fig. 1. (Top) Multiple EL systems shifted from the desired orbit show smaller
synchronization errors than tracking errors. The dotted lines indicate directed com-
munication links. (Bottom) Concurrent synchronization of multiple hierarchically-
combined groups (see Section 4.3). The synchronization of the green group sends
the synchronous desired input to the yellow group, whose synchronous trajectory
in turn enters the red and blue groups. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Egerstedt, 2007; Kim & Mesbahi, 2006). An integral adaptation law
also results in smooth switching of network topologies.

An adaptive network topology is useful if the network goes
through numerous reconfigurations of the network topology. A
large number of agents in a network can be effectively synchro-
nized and stabilized without constraining the network to pre-
defined stabilizing topologies like balanced digraphs (Olfati-Saber
& Murray, 2004) or strongly connected graphs (Liu & Chopra, 2010).
Another benefit of the proposed adaptive scheme is that inverse-
optimality (Krstic & Li, 1998; Luo, Chu, & Ling, 2005) can be used to
design an adaptive control law, without solving a computationally-
expensive online optimization scheme. Also, we will show that
the required gain for stabilization is smaller by employing a
projection-based adaptive scheme. Furthermore, the technique of
hierarchically combining two types of inputs (i.e., tracking and
synchronization) can be used in tandem with the adaptive Lapla-
cian method to achieve concurrent synchronization among numer-
ous, hierarchically-divided subgroups (see Fig. 1).

Contribution 2: Nonlinear stability analysis of a hierarchically
combined, adaptive networks. The proposed adaptive Laplacian
method is presented with nonlinear stability proofs for achieving
the control objectives in (1). In fact, the stability results in this
paper are derived to allow many different choices of adaptation
laws. For stability analysis of networked nonlinear systems, the
passivity of the input-output dynamics can be exploited (Arcak,
2007; Chopra & Spong, 2006; Hatanaka et al., 2012; Ihle, Arcak, &
Fossen, 2007). Input-to-state stability (ISS) is also useful to study
stability of networked systems with bounded uncertainties (e.g.,
Nesi¢ and Teel (2004) and Riiffer, Kellett, and Weller (2010)). In
this paper, contraction analysis (Lohmiller & Slotine, 1998), which
has been successfully applied to networked dynamics (Chung, Ah-
sun, & Slotine, 2009; Chung & Slotine, 2009, 2010; Pham & Slotine,
2007; Wang & Slotine, 2006a), is used to analyze the synchroniza-
tion stability and robustness of the virtual observer-like systems
(Wang & Slotine, 2005) that are constructed by the proposed con-
troller. We will show that if an unperturbed virtual system is con-
tracting (i.e., globally exponentially stable), then the virtual system
with a bounded disturbance is ISS and finite-gain £, stable with
p € [1, oc]. Many types of model uncertainty can be cast into a
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