
Nonparametric identification of a Wiener system using
a stochastic excitation of arbitrarily unknown spectrum$

Tsair-Chuan Lin a,n, Kainam Thomas Wong b

a Department of Statistics, National Taipei University, Taiwan
b Department of Electronic & Information Engineering, Hong Kong Polytechnic University, Hong Kong

a r t i c l e i n f o

Article history:
Received 3 March 2015
Received in revised form
14 September 2015
Accepted 22 September 2015
Available online 9 October 2015

Keywords:
Estimation
Linear systems
Nonlinear estimation
Nonlinear filters
Nonlinear systems
Nonlinearities
Recursive estimation
Regression analysis
Stochastic systems
System identification
Time series analysis

a b s t r a c t

A Wiener system consists of two sequential sub-systems: (i) a linear, dynamic, time-
invariant, asymptotically stable sub-system, followed by (ii) a nonlinear, static (i.e.
memoryless), invertible sub-system. Both sub-systems will be identified non-
parametrically in this paper, based on observations at only the overall Wiener system's
input and output, without any observation of any internal signal inter-connecting the two
sub-systems, and without any prior parametric assumption on either sub-system. This
proposed estimation allows the input to be temporally correlated, with a mean/variance/
spectrum that are a priori unknown (instead of being white and zero-mean, as in much of
the relevant literature). Moreover, the nonlinear sub-system's input and output may be
corrupted additively by Gaussian noises of non-zero means and unknown variances. For
the above-described set-up, this paper is first in the open literature (to the best of the
present authors' knowledge) to estimate the linear dynamic sub-system non-para-
metrically. This presently proposed linear system estimator is analytically proved as
asymptotically unbiased and consistent. Moreover, the proposed nonlinear sub-system's
estimate is assured of invertibility (unlike earlier methods), asymptotic unbiasedness, and
pointwise consistence. Furthermore, both sub-systems' estimates' finite-sample con-
vergence is also derived analytically. Monte Carlo simulations verify the efficacy of the
proposed estimators and the correctness of the derived convergence rates.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Why Wiener system?

A Wiener system consists of (i) a linear, dynamic, cau-
sal, time-invariant, asymptotically stable sub-system, fol-
lowed by (ii) a nonlinear, memoryless (static), invertible

sub-system. A block diagram of the Wiener system is
shown in Fig. 1, showing the two sub-systems in cascade,
and defining various symbols’ inter-relationship.

The Wiener system model has been used in diverse
applications: to model the inter-relationship between
muscle tension and muscle length [6], the human visual
system [9], the propagation channel in satellite microwave
communications [14], or power amplifiers [29].

1.2. Why nonparametric modeling of the nonlinearity?

Wiener system identification may be traced to the
1970s, but this decades-long literature mostly assumes the
to-be-estimated nonlinearity to follow some prior known
functional form, typically a polynomial of a prior known
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order or a piecewise-linear function. The system-
identification problem then degenerates to a parameter-
estimation problem to estimate the parameters of the
presumed model.

Such parametric presumption is rigid and could inher-
ently lead to modeling biases. What if the presumed model
is invalid? What if no prior information is available to
make any presumption?

Nonparametric modeling, in contrast, relaxes the
restrictions implicit in any parametric model. Nonpara-
metric system identification thus requires little prior
knowledge on the unknown nonlinearity, reflecting the
reality that such prior knowledge is often unavailable in
practice. Nonparametric estimation algorithms are
advanced in [13,15,17,27,19,20,22,24,31] for Wiener mod-
els. This work will allow the static nonlinearity to non
parametrically be any Borel-measurable function that is
invertible, piecewise twice-differentiable, Lipschitz con-
tinuous, and bounded.

1.3. Why stochastic input signal?

A physical system is often subject to stochastic influ-
ences, besides deterministic influences. Or, the system
inputs’ mathematical models may be unknown, and thus
to be regarded conveniently as a stochastic time series.
This results in the scenario of a deterministic system
excited by purely stochastic inputs, as in
[13,17,19,20,22,24,25,31].

This work models the Wiener system's input signal as
random, Gaussian-distributed, and possibly colored with
an unknown frequency-spectrum. Moreover, this work
allows the possibility of the Wiener system being ran-
domly perturbed between the two sub-systems, and/or at
the nonlinear static sub-system's output before the
observations are collected. These random perturbations
are each modeled as white Gaussian noise, at a (possibly)
non-zero mean (that is constant and prior known) and at a
possibly unknown (but constant) variance.

1.4. Why spectrally colored input signal?

The practicing engineer often has only limited physical
leeway with the instrumentation to physically excite a
specific time–frequency signal as an input to the Wiener

system – recalling that the excited “signal” is often not
simply an electric voltage or current, but a chemical,
mechanical or thermal process. A spectrally colored times
series could be physically easier (under some environ-
ments to generate) than a perfectly white times series.

Moreover, if the system is to operate only within a
certain frequency-subband (e.g. a power amplifier trans-
mitting a band-limited signal over a particular frequency-
band), then the nonlinear subsystem's behavior at that
relevant frequency-band can be more accurately estimated
by using a spectrally colored input whose energy is con-
centrated in only that frequency-band, than by using a
white input whose energy must necessarily be dispersed
over all frequencies.

In the open literature of Wiener system identification
via nonparametric means using a stochastic input, the only
reference appears to be Greblicki's important contribution
in [22]. This present work (i) will improve on that seminal
work's nonlinear subsystem estimation accuracy and
convergence, (ii) will guarantee the nonlinearity estimate
of invertibility, (iii) will estimate also the linear dynamic
subsystem (which is not estimated in [22]) in parallel to
the estimation of the nonlinear static subsystem, (iv) will
allow the linear dynamic subsystem of non-causality,
(v) will tolerate the input of any non-zero mean (that may
remain unknown to the estimators), and (vi) will permit
the unobserved perturbations of any zero/nonzero mean.

1.5. Contribution of this work

Referring to the notation in Fig. 1, this paper will non-
parametrically estimate the linear dynamic sub-system's
impulse response fhn;n¼ �Q ;1�Q ;…; �1;0;1;2;…g and
the nonlinear static subsystem's input–output nonlinearity
mð�Þ. Observable is only the input and the output of the
overall Wiener system (i.e., fðun; ynÞ; 8ng), but not any
signal nor any noise (e.g. fpn; vn;wn; xn; zn; 8ng) internally
interconnecting the two sub-systems. These two sub-
systems’ proposed estimators are algorithmically inde-
pendent from each other, in the sense that each could be
computed without computing the other, or that the two
subsystems may be estimated simultaneously in parallel.

More specifically, this work will accommodate the fol-
lowing models of the nonparametric Wiener system, its
colored input, and its unobservable perturbation: (i) the

Fig. 1. The schematic of a Wiener system, with disturbance fpng corrupting the Wiener system's output.
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