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a b s t r a c t

Many practical applications involve the basic problem of fitting a number of data points to
a pair of concentric circles, including coordinate metrology, petroleum engineering and
image processing. In this paper, two versions of the Levenberg–Marquardt (LM) are
applied to obtain the maximum likelihood estimator of the common center and the radii
for the concentric circles. In addition, two numerical schemes for conic fitting are
extended to the concentric circles fitting problem, as well as several algebraic fits are
proposed. This paper shows analytically that the MLE and the numerical schemes are
statistically optimal in the sense of reaching the Kanatani–Cramér–Rao (KCR) lower
bound, while the other algebraic fits are suboptimal. Our results are confirmed by several
numerical experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A few studies in the literature are available for the fit-
ting of coupled geometric objects, such as concentric cir-
cles. Many objects encountered in practice are circularly
concentric. A simple example is the inner and outer
boundaries of a pipe. Another example is the inner and
outer edges of an iris image. The concentric circles fitting
methods proposed here have potential use in automatic
inspection for pipes, iris recognition for biometric appli-
cations, calibration for cameras [14] and ellipticity esti-
mation of steel coils [16].

Dampegama [11] is perhaps the first to introduce the
concentric circle estimation problem and propose a solu-
tion for obtaining the size of the ruined Abhayagiriya
stupa. Benko et al. [4] and O'Leary et al. O' [18] investigated
the fitting problem further and developed better solutions.
O'Leary et al. O' [18] applied the quadratically constrained
total least squares method to solve the fitting problem. In

addition to algebraic solution, an iterative method was
proposed by Benko et al. [4]. Recently, Ma and Ho [16]
developed an explicit solution to coupled circles and
ellipses fittings. Their fit is non-iterative and it works well
under very general statistical assumption, however their
fitting may have heavy bias when data have large level of
noise and are sampled along relatively short arcs.

In this paper we develop new solutions for the fitting of
concentric circles to a number of data points. The first
proposed estimator is the maximum likelihood estimator
(MLE). We also extended well-known schemes for conic
fitting problem to the problem of fitting concentric circles.
These schemes are numerical procedures, such as Renor-
malization or other schemes that solve the so-called gra-
dient weighted algebraic fit (GRAF). These numerical
schemes and the MLE are iterative fits and their perfor-
mance depend heavily on the initial guess, and supplying a
good initial guess is a must.

The best way of choosing the initial guess is the alge-
braic fit that is obtained by using some approximate of the
MLE or GRAF, and as such, two other algebraic fits are
proposed in addition to extending one of the most popular
fits in single circle/conic fitting that is known as the Taubin
fit [20]. However, direct application of the Taubin fit to
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concentric circles is prohibited due to the singularity issue
and we have proposed a modification to the Taubin fit to
eliminate the singularity problem.

To mathematically formulate our problem, let us first
denote ni to be the number of data points on the ith
component of the coupled (concentric) circles,
i¼ 1;2;…;K . The data from the concentric circles are
modeled as

sij ¼ ~s ijþnij; j¼ 1;2;…;ni; i¼ 1;2;…;K; ð1:1Þ
where sij ¼ ðxij; yijÞT represents the 2�1 vector containing
the Cartesian coordinates of the jth point observed around
the ith circle. Also, ~sij ¼ ð ~xij; ~yijÞT is the true value and
nij ¼ ðδij; ϵijÞT is the observational noise of sij. Generally in
this paper, we use the common notations that bold capital
letters represent matrices and bold lower case letters
denote vectors. 1m and 0m will be used to denote unity and
zero vectors of length m. Also the symbol tilde represents
the true value. For an unknown parameter � to be esti-
mated, �̂ denotes its estimate while � itself is viewed as a
variable for optimization. For ease of illustration we shall
consider two concentric circles (K¼2) in the following. The
developed algorithms can be extended to more than two
concentric circles in a direct manner and we provide some
details of the extension at the end of Section 4.

The true point ~s ij satisfies the following relation:

Pið ~θ; ~s ijÞ : ¼ ‖~s ij� ~c‖2� ~R
2
i ¼ 0: ð1:2Þ

The 4-dimensional vector ~θ is the vector of the true
parameters ~θ ¼ ð ~cT ; ~R1; ~R2ÞT , where ~c ¼ ðη; ~bÞT is the com-
mon circle center, ~R1 and ~R2, with ~R1o ~R2, are the two
circle radii, and J�J is the Euclidean norm. In this paper, ~θ
is the unknown parameter vector to be estimated.

Expanding the square in Eq. (1.2) and denoting ‖~s ij‖2 as
~zij, Eq. (1.2) can be expressed as

Pið ~ϕ; ~s ijÞ ¼ ~A ~zijþ ~B ~xijþ ~C ~yijþ ~Di ¼ 0; ð1:3Þ
where ~ϕ ¼ ð ~A; ~B; ~C ; ~D1; ~D2ÞT is the algebraic parameter
vector. Thus, one might alternatively estimate the
algebraic parameter vector, then recover the natural
parameters through the relationships between the two
parametric spaces

a¼ �B
2A

; b¼ �C
2A

; R2
i ¼

B2þC2�4ADi

4A2 ; i¼ 1;2: ð1:4Þ

Eq. (1.3) can be expressed in a compact form as Pi ¼ ~ϕ
T
~z ij,

where

~z1j ¼ ~z1j; ~x1j; ~y1j;1;0
� �T

and ~z2j ¼ ~z2j; ~x2j; ~y2j;0;1
� �T

: ð1:5Þ

For notation simplicity, we shall collect all n¼ n1þn2

measurement data points together and represent them as

s¼ ~sþn; ð1:6Þ
where s¼ ðsT11;…; sT1n1 ; s

T
21;…; sT2n2

ÞT and

n¼ nT
11;…;nT

1n1
;nT

21;…;nT
2n2

� �T

are 2n� 1 vectors of the observed points and the noise
vector, respectively; while ~s is the true value of s.

We also shall model n as zero-mean Gaussian with a
covariance matrix equal to Q. In most cases, it is

reasonable to assume nik and njl, for k¼ l or ia j, are
independent so that Q is a diagonal matrix. Here we
consider the specific case that covðnij;nilÞ ¼ σ2δ̂jl for all
l; j¼ 1;…;ni and i¼ 1;2, where δ̂ jl represents the Kro-
necker Delta function.

The paper is organized as follows. Section 2 discusses
the MLE in full details. In Section 3, the gradient weighted
algebraic fit (GRAF) and its implementations are discussed.
Section 4 focuses on the non-iterative algebraic fits. Sec-
tion 5 provides the first order error analysis, which is
supported with numerical experiments in Section 6.

2. Maximum likelihood estimator

Based on our statistical assumptions, the MLE, ~θm, turns
out to be the minimizer of

F 1ðθÞ ¼
X2
i ¼ 1

Xni

j ¼ 1

‖sij� ~s ij‖2; ð2:1Þ

subject to a system of equations given in Eq. (1.2). This is
equivalent to minimizing the sum of the squares of the
orthogonal distances of the observed points sij to the fitted
circles indexed by ða;b;R1Þ and ða;b;R2Þ.

F ðθÞ ¼
X2
i ¼ 1

Xni
j ¼ 1

Jrij J�Ri
� �2 ¼ X2

i ¼ 1

Xni
j ¼ 1

d2ij; ð2:2Þ

where rij ¼ sij�c. The signed distance dij stands for the
distance from sij to the circle Pi. i.e., for each i¼1,2, and
j¼ 1;…;ni,

dij ¼ rij�Ri; rij ¼ Jrij J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xij�a
� �2þ yij�b

� �2
r

: ð2:3Þ

This result follows from implementing the Lagrangian
multipliers λij. That is, let

F 2ðθÞ ¼
X2
i ¼ 1

Xni

j ¼ 1

‖sij� ~s ij‖2�
X2
i ¼ 1

Xni
j ¼ 1

λij ‖~s ij�c‖2�R2
i

� �
:

ð2:4Þ
Differentiating with respect to c;R1;R2, and ~s ij and then
equating the results to zero give

∂F 2

∂c
¼ 2

X2
i ¼ 1

Xni

j ¼ 1

λij ~s ij�c
� �¼ 0 ð2:5Þ

∂F 2

∂Ri
¼ 2

Xni

j ¼ 1

λijRi ¼ 0; i¼ 1;2 ð2:6Þ

∂F 2

∂~s ij
¼ �2 ðsij� ~s ijÞþλijð~s ij�cÞ� �¼ 0 ,. ð2:7Þ

From Eq. (2.7), we obtain

~s ij ¼
sij�λijc
1�λij

: ð2:8Þ

However, ~s ij satisfies (1.2). Substituting (2.8) in (1.2) gives

R2
i ¼

sij�λijc
1�λij

�c
����

����
2

¼ rij
1�λij

����
����
2

: ð2:9Þ

This means that j1�λijj ¼ R�1
i Jrij J , and as such, λij ¼

17R�1
i Jrij J . But λij ¼ 1þR�1

i Jrij J cannot be the solution,
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