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a b s t r a c t

The variational mode decomposition (VMD) was proposed recently as an alternative to the
empirical mode decomposition (EMD). To shed further light on its performance, we
analyze the behavior of VMD in the presence of irregular samples, impulsive response,
fractional Gaussian noise as well as tones separation. Extensive numerical simulations are
conducted to investigate the parameters mentioned in VMD on these filter bank prop-
erties. It is found that, unlike EMD, the statistical characterization of the obtained modes
reveals a different equivalent filter bank structure, robustness with respect to the non-
uniformly sampling and good resolution in spectrum analysis. Moreover, we illustrate the
influences of the main parameters on these properties, which provides a guidance on
tuning them. Based on these findings, three potential applications in extracting time-
varying oscillations, detrending as well as detecting impacts using VMD are presented.

& 2015 Published by Elsevier B.V.

1. Introduction

Signal and data analysis is an important and necessary
part in both research and practical applications. The
essential information in the data is often mingled together
with other irrelevant information. The primary goal of
signal processing is to capture underlying information and
structures, e.g. impacts and trends, which are often chal-
lenges due to the nonlinear and nonstationary nature of
the data. Fourier and wavelet transforms correspond to the
use of some basis (or frame), predefined independently of
the processed signal, while adaptive methods can con-
struct such a basis directly based on the information
contained in the signal. Empirical mode decomposition
(EMD), pioneered by Huang et al. [2], is a data-driven

algorithm to represent nonstationary signals as sums of
zero-mean intrinsic mode functions (IMFs). EMD essen-
tially represents the signal as an expansion of basis func-
tions that are signal-dependent via the recursive sifting
iterative procedure, unlike the Fourier and wavelet trans-
form. The EMD method has gained a lot of interest in
signal analysis in this last decade, because of its usefulness
in separating stationary and non-stationary components
from a signal. However, EMD remains an exclusively
empirical algorithm, without a solid mathematical foun-
dation, despite numerous attempts so far made to improve
the understanding of the way it operates or to enhance its
performance. For instance, it has been demonstrated that
IMFs obtained by EMD provide frequency responses
similar to that of a dyadic filter bank [3]. On the other
hand, some novel adaptive methods have been developed
with a more firm theoretical foundation, e.g. the syn-
chrosqueezing transform formulated by Daubechies et al.
in [4]. The stability and robustness properties of the syn-
chrosqueezing transform to bounded perturbations of the
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signal and to Gaussian white noise have been also inves-
tigated in [5]. Hou et al., however, proposed a partially
variational approach to the traditional EMD, in which the
signal is recursively decomposed into an IMF with TV3-
smooth envelope and a TV3-smooth residual [6]. More-
over, the empirical wavelet transform (EWT) is a relatively
recently proposed algorithm, which explicitly builds an
adaptive wavelet basis to expand a given signal into
adaptive subbands [7].

VMD is a very newly developed methodology as an
alternative to the EMD method, which can adaptively
decompose a multi-component signal into a number of
quasi-orthogonal intrinsic mode functions [1]. It has been
verified VMD outperforms EMD with regards to tone
detection and separation as well as noise robustness [1].
However, little is known, indeed, on the decomposition
achieved by VMD when analyzed signals are only the
realization of some stochastic process, along with the
effects of parameters mentioned in VMD on these
equivalent filters. Noisy or nonuniformly sampled data are
ubiquitous in engineering and natural science, hence the
stability and robustness of VMD should be also investi-
gated in such cases. In addition, it would be rather inter-
esting to study the behavior of VMD for the problem of
tones separation and to see whether it exhibits a similar
“beating” phenomenon. The feature of tones separation for
the VMD have been partly investigated in [1], nevertheless
the influence of the main parameters on this performance
is still an open question.

The aim of this paper is to deal with the above deli-
neated issues of the VMD with respect to nonuniform
samples, equivalent impulse response and filter bank
structure, as well as tones-separation. Considering key
parameters mentioned in VMD are expected to affect the
resulting behaviors and the decomposed components to
some extent, hence this paper attempts to address in a
well-controlled (hopefully) use of the VMD technique for
practical applications. More precisely, an overview of VMD
is first given in Section 2. In Section 3, we investigate four
inherent features of VMD through extensive numerical
experiments. Subsequently, three potential applications of
VMD are illustrated in Section 4. Discussion and conclu-
sions are presented in Sections 5 and 6, respectively.

2. Variational mode decomposition

VMD can non-recursively decompose a real-valued
multi-component signal f into a discrete number of quasi-
orthogonal band-limited sub-signals uk with specific spar-
sity properties in the spectral domain [1]. Each mode is
compact around a center pulsation ωk and its bandwidth is
estimated using H1 Gaussian smoothness of the shifted
signal. For the convenience of following discussions, let us
commence by calling these modes obtained by VMD as
band-limited IMFs (BLIMFs) in this work. BLIMFs are dif-
ferent from IMFs defined in EMD technique according to the
numbers of extrema and zerocrossings. The VMD technique
is essentially written as a constrained variational problem

in [1]:

min
ukf g; ωkf g

XK
k ¼ 1

∂t δ tð Þþ j
πt

� �
�uk tð Þ

� �
e� jωkt

����
����2
2

( )

subject to
XK
k ¼ 1

uk ¼ f ð1Þ

where uk is the decomposed BLIMF and K is known a priori.
The constraint in (1) can be addressed by introducing a
quadratic penalty and Lagrangian multipliers. The aug-
mented Lagrangian is thus given as follows:

L uk
� �

; ωk
� �

; λ
	 
¼ α

XK
k ¼ 1

∂t δ tð Þþ j
πt

� �
�uk tð Þ

� �
e� jωkt

����
����2
2

þ f ðtÞ�
XK
k ¼ 1

ukðtÞ
�����

�����
2

2

þ λðtÞ; f ðtÞ�
XK
k ¼ 1

ukðtÞ
* +

ð2Þ

The above (2) defines an augmented Lagrangian, and the
saddle point of (2) corresponding to the solution (1) is
found using Alternate Direction Method of Multipliers
(ADMM) [8]. All the modes and center frequencies, gained
from the solution in Fourier domain, are updated in two
directions. The estimate of the k-th mode is updated using

ûnþ1
k ωð Þ ¼

f̂ ωð Þ�Piokû
nþ1
i ωð Þ�Pi4kû

n
i ωð Þþ λ̂

nðωÞ
2

1þ2αðω�ωn
k Þ2

ð3Þ

where α is known as the balancing parameter of the data-
fidelity constraint. Wiener filtering, hence, is potentially
embedded in the VMD algorithm, which makes it much
more robust to sampling and noise. The center frequency ωk

is updated as the center of gravity of the corresponding
positive part of mode's power spectrum, which can be
represented by

ωnþ1
k ¼

R1
0 ω ûnþ1

k ðωÞ
��� ���2 dωR1

0 ûnþ1
k ðωÞ

��� ���2 dω ð4Þ

As far as initializations are concerned, two simple and
fundamental methods for setting ω0

k ; k¼ 1;…;K , are con-
sidered in this work, namely, uniformly spaced distribu-
tion and zero initial. Equivalently, the initialization of
center frequencies with uniformly spaced distribution is
defined as

PU :ω
0
k ¼

k�1
2K

; k¼ 1;…;K ð5Þ

while the zero initial for the center frequencies is denoted
as

PZ :ω
0
k ¼ 0; k¼ 1;…;K: ð6Þ

It is not the purpose of this paper to reintroduce VMD
algorithm in detail. The interested readers are referred to
[1] for complete algorithm and the implementation of the
VMD. Nevertheless, the reliance of the initialization of
center frequencies of the modes on the decomposition,
and the particular choice of α for a specific application, will
be investigated at length in the following sections.
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