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a b s t r a c t

In this paper, we apply the QR decomposition to parameter estimation for K two-
dimensional (2-D) complex-valued sinusoids embedded in additive white Gaussian noise.
By exploiting the rank-K and linear prediction (LP) properties of the 2-D noise-free data
matrix, we show that the frequencies and damping factors of one dimension can be
extracted from the first K rows of R, that is, the upper triangular matrix in the factor-
ization. An iteratively weighted least squares (IWLS) algorithm is then proposed to esti-
mate the LP coefficients from which the sinusoidal parameters in this dimension are
computed. The frequencies and damping factors of the remaining dimension are esti-
mated using a similar IWLS procedure such that the 2-D parameters are automatically
paired. We thus refer our estimator to as the QR-IWLS algorithm. Moreover, we have
analyzed its bias and mean square error performance. In particular, closed-form expres-
sions are derived for the special case of K¼1. The performance of the QR-IWLS method is
also evaluated by comparing with several state-of-the-art 2-D harmonic retrieval algo-
rithms as well as Cramér–Rao lower bound via computer simulations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many important problems in signal processing can be
formulated as sinusoidal parameter estimation where the
frequencies, damping factors and/or amplitudes are required
to determine from noisy observations. For the one-dim-
ensional (1-D) case, application areas include communica-
tions, radar, sonar, speech analysis, astronomy, control theory,
instrumentation and measurement [1–8], and more recently,
smart grid [9]. Apart from the commonly considered 1-D
parameter estimation, multi-dimensional sinusoids are also
useful in modeling many real world signals. For example, the
sinusoidal parameters of 2-D observations can correspond to

the position information of multiple targets in wireless com-
munication channel [10] and multiple-input multiple-output
radar [11,12]. Moreover, the measurements in nuclear mag-
netic resonance spectroscopy [13], which is a powerful tech-
nique for protein research in food and nutritional industries,
can be modeled as a sum of multi-dimensional damped
sinusoids where the frequencies and damping factors are
crucial to determine the protein structures.

Given the 2-D observations of K cisoids embedded in
Gaussian distributed disturbances, the maximum like-
lihood (ML) method [14] can provide the optimum para-
meter estimation performance in the sense that its mean
square error (MSE) attains the Cramér–Rao lower bound
(CRLB). However, its computational complexity is quite
demanding because we need to find the global maximum
in the ML cost function, which is nonlinear with 2K vari-
ables. To reduce the computation, relaxation can be made
in the ML formulation to produce a near-optimum solution
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[14,15]. Nevertheless, the subspace approach is more
popular than the ML based methods because it is more
computationally attractive and is able to achieve a very
high estimation accuracy. The core idea of the subspace
methodology is to separate the observations into the so-
called signal and noise subspaces via eigenvalue decom-
position of the sample covariance matrix or singular value
decomposition (SVD) of the received data matrix from
which the sinusoidal parameters are determined using the
resultant eigenvalues, eigenvectors, singular values and/or
singular vectors. Here, the K largest eigenvalues and sin-
gular values and their associated eigenvectors and singular
vectors, respectively, correspond to the signal subspace
while the remaining components belong to the noise
subspace. Multiple signal classification (MUSIC) [11,13],
and estimation of signal parameters via rotational invar-
iance techniques (ESPRIT) [16–18], are two well-known
and conventional subspace algorithms, but they generally
provide suboptimal estimation performance. Recently, we
have proposed a subspace method called principal-
singular-vector utilization for modal analysis (PUMA)
[19,20], whose derivation is founded by the knowledge
that the K left and right principal singular vectors contain
the frequencies and damping factors in the first and sec-
ond dimensions, respectively. By making the most of these
2K vectors, the MSE of the PUMA algorithm can meet the
CRLB at sufficiently small noise and/or large data size
conditions. To avoid performing SVD, an even faster 2-D
frequency estimator [21] has been devised by exploiting
the correlation of the data samples, whose MSE approa-
ches the CRLB when the noise power tends to zero and/or
the data size tends to infinity. However, this technique is
designed only for a single undamped multi-dimensional
cisoid. As SVD is required in [19,20], we are motivated to
explore other matrix factorizations which are more com-
putationally attractive to perform the 2-D sinusoidal
parameter estimation. In this work, replacing the SVD by
QR decomposition is investigated. Unlike the PUMA
method where the frequency and damping factor infor-
mation is contained in the left and right dominant prin-
cipal singular vectors, sinusoidal parameters of only one
dimension are embedded in the QR decomposition.
Although both PUMA and the proposed schemes are based
on an iteratively weighted least squares (IWLS) procedure,
our weighting matrix is simpler, and only one iteration is
required for parameter convergence. To the best of our
knowledge, application of QR factorization to 2-D sinu-
soidal parameter estimation has not been studied in the
literature, although it has been addressed for the 1-D case
[22,23].

The rest of the paper is organized as follows. In Section 2,
the 2-D sinusoidal parameter estimation problem is first
formulated. Then we show that the frequency and damping
factor information of one dimension is contained in the first
K rows of R, namely, the upper triangular matrix in the QR
factorization of the observed data matrix. By utilizing the
linear prediction (LP) property and weighted least squares
(WLS) technique, an iterative procedure that operates on
these K rows is devised for estimating the frequencies and
damping factors in this dimension. By exploiting an alter-
native decomposition of the received data matrix, the

frequency and damping factor parameters of the remaining
dimension are also estimated using a similar IWLS procedure
such that 2-D frequency pairing is automatically achieved.
The proposed estimator is referred to as the QR-IWLS algo-
rithm. In Section 3, the mean and MSE expressions of the
proposed estimator are produced. Numerical examples are
included in Section 4 to corroborate the theoretical calcula-
tions and to evaluate the estimation performance of the QR-
IWLS algorithm by comparing with the ML [14], ESPRIT [17],
and PUMA [20] schemes as well as the CRLB. Finally, con-
clusions are drawn in Section 5.

Notation: Scalars, vectors and matrices are denoted by
italic, bold lower-case and bold upper-case symbols,
respectively. The angle and magnitude of a are represented
as ∠ðaÞ and jaj. The derivative of a function f(a) with
respect to a is f 0ðaÞ. The noise-free A is denoted by ~A , its
estimate is Â and its rank is rank(A), while T, H, n, �1 and †

are the transpose, conjugate transpose, complex conjugate,
inverse, and pseudoinverse operators, respectively. The
mth element of a is ½a�m and the (m,n) entry of A is either
denoted by ½A�m;n or am;n. The IM symbolizes the M �M
identity matrix and 0M�N represents the M � N zero
matrix. The diagðaÞ denotes a diagonal matrix with vector
a as the main diagonal and Toeplitzða;bT Þ is a Toeplitz
matrix with first column a and first row bT . The vec is the
vectorization operator, E is the expectation operator, and
� represents the Kronecker product. Finally, R and C are
used to represent the sets of real and complex numbers,
respectively.

2. Algorithm development

We first state the 2-D sinusoidal parameter estimation
problem as follows. The observed data are

xm;n ¼ sm;nþwm;n; m¼ 1;2;…;M; n¼ 1;2;…;N; ð1Þ
where

sm;n ¼
XK
k ¼ 1

γkα
m
k β

n
k exp jðμkmþνknÞ

� �
; ð2Þ

is the noise-free signal which contains KZ2 damped
cisoids. Note that the simplest case of K¼1 will also be
discussed at the end of this section. The γkAC is the
complex-valued amplitude, μkAð�π; πÞ is the frequency
and αkAR is the damping factor, in the first dimension,
while νkAð�π; πÞ and βkAR are the corresponding para-
meters in the second dimension, of the kth tone. All fγkg,
fμkg, fαkg, fνkg and fβkg are unknown deterministic con-
stants. On the other hand, wm;n represents the additive
zero-mean noise which is modeled as a complex white
Gaussian process with unknown variance σ2. The dimen-
sions of the 2-D observations are M � N. It is assumed that
K is known a priori and minðM;NÞ4K . We further assume
that the frequencies in at least one of the dimensions are
distinct. Our objective is to find the frequencies and
damping factors from the MN measurements of fxm;ng.
Note that once these parameters have been estimated, the
amplitudes can be easily determined as they are linear
in (2).
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