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a b s t r a c t

The problem of tracking multiple sources using observations acquired at spatially scat-
tered sensors is considered here. Two different sensing architectures are studied: (i) a
fusion-center based topology where sensors have a limited power budget; and (ii) an ad
hoc architecture where sensors collaborate with neighboring nodes enabling in-network
processing. A novel source-to-sensor association scheme and tracking is introduced by
enhancing the standard Kalman filtering minimization formulation with norm-one reg-
ularization terms. In the fusion-based topology a pertinent transmission power constraint
is introduced, while coordinate descent techniques are employed to recover the unknown
sparse observation matrix, select pertinent sensors and subsequently track the source
states. In the ad hoc topology, the centralized minimization problem is written in a
separable way and the alternating direction method of multipliers is utilized to construct
an in-network algorithmic tracking and association framework. Numerical tests demon-
strate that the resulting schemes are capable to associate sources with sensors, and track
the unknown sources while adhering to any imposed power constraints.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The task of tracking simultaneously many sources using
sensor measurements at spatially scattered locations is
extremely useful in a number of applications varying from
surveillance to environmental monitoring [2]. The major-
ity of existing tracking approaches, such as the network
schemes in [1,11,10,23,26,43,27], extend standard techni-
ques such as Kalman filtering or particle filtering [3,12].
The aforementioned approaches are developed under the
assumption that the sensing model parameters are avail-
able. Such an assumption enables sensors to identify

which sources they sense, which can further simplify the
tracking process. However, in many settings it is not
known which sensors observe each of the underlying field
sources, while the signal attenuation from a source to a
sensor is unavailable giving rise to an observation model
with unknown parameters. In such settings source-to-
sensor association is essential.

Alternative Kalman filtering schemes have been
designed for settings where there is uncertainly in the
state and observation model parameters which are known
with some additive error involved [22,32]. A robust Kal-
man filter is developed in [40], which relies on the
assumption that an uncertainty norm in the state and
measurement models can be upper bounded. The latter
work is extended in [41] to incorporate uncertainty with
an upper bounded norm in the state and measurement
noise covariance matrices. Robust Kalman filtering
approaches have also been developed in sensor network
settings. The work in [20] considers uncertainties in the
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measurement model introduced by an unknown sensor-
to-fusion center channel. The channel follows a probabil-
istic on-off model, which is assumed known, and incor-
porated in the Kalman filter, to decide whether to use or
drop measurements. Similarly, the work in [28] considers
the design of Kalman filtering techniques in the presence
of noise covariance matrix uncertainties with a bounded
norm for a fusion-center based multisensor setting.

Different from these approaches, here no a priori
information is available about the observation model
parameter values, i.e., the sensing matrix entries. Avail-
ability of a model is crucial in associating the sources with
the sensor measurements. Existing data association
schemes [25,13,37,15,24] match observations with sources
across time and rely on probabilistic models. Differently,
the sensors–sources association scheme proposed here is
relying only on the acquired sensor data and no prob-
abilistic models are adopted. A different approach is fol-
lowed in [35] where multiple fusion centers are present in
the sensor network and evaluate the posterior Cramer–
Rao lower bound that requires knowledge of the under-
lying data model. This type of bounds cannot be calculated
in our setting. Data association of targets and measure-
ments in the context of radar target tracking resort on
probabilistic models to associate radar measurements
acquired at different time instances with different targets
or clutter [38,39]. In our setting the association of sources
and sensors will be performed both in space, due to the
presence of scattered sensors, and time without the
availability of a sensing model.

In practice, sources present in the monitored field are
localized and affect only a small percentage of the sensors
present in the sensor network (SN). For instance ground
vibrating sources produce signals that undergo an expo-
nential attenuation as they propagate in the ground. Such
signals can be sensed in the measurements of sensors
located a few meters away from the sources [16]. Inter-
estingly, such a localized structured can be translated to a
sensing matrix which has a large number of negligible (or
zero) entries, i.e., a sparse matrix. Sparsity is exploited
here to recover the unknown sparse sensing matrix in the
measurement model, while tracking the different source
states. To this end, norm-one regularization techniques,
see e.g., [34,44], will be employed to enhance the standard
Kalman filter framework. The idea of sparsity has been
exploited in the context of tracking [8,36,18], though the
difference with respect to the present setting is that
sparsity is in the source states and not in the sensing
matrix.

Sparsity in the sensing matrix will be exploited here to
jointly recover the sensing matrix and obtain tracking
estimates for the, not necessarily sparse, field source states.
The minimization formulation for the Kalman filter/
smoother, see e.g., [3], will be enhanced with a pertinent
norm-one regularization term. The sparsity-inducing
terms will enable associating sources with sensors, and
thus identify the sensors that acquire informative obser-
vations about the sources and use only those subsequently
for tracking. Many existing tracking techniques require all
sensors to be active [1,43,26,27] which may be resource-

consuming given the locality of the sources and the fact
that only a few sensors bear information.

Two different network topologies of complementary
nature are considered here. A fusion center (FC) based
topology is considered first in which a fusion center is
responsible for processing the sensor data and carrying out
the association and tracking. Sparsity is combined with the
introduction of a power constraint that enables utilization
of a small percentage of sensors that are source-
informative while a transmission power budget is not
exceeded. The resulting novel constrained minimization
formulation is tackled here via coordinate descent tools,
see e.g., [4]. Power considerations have been incorporated
in estimation and tracking [9,17], though without taking
into consideration issues such as source-to-sensor asso-
ciation and unknown model parameters.

The requirement for a more scalable and failure-
relisient sensing architecture, while compromising com-
putational speed, leads to tackle the novel norm-one reg-
ularized Kalman minimization framework in an ad hoc
sensing topology. After reformulating the latter mini-
mization problem in a separable form, the alternating
direction method of multipliers (ADMM) combined with
block coordinate descent, see e.g., [4,5], is utilized to
obtain an in-network algorithmic scheme that is capable
of associating sensors with sources while tracking the
source states.

The paper is organized as follows. The two different
sensing topologies along with the problem setting are
outlined in Section 2. Building on the standard mini-
mization formulation for the Kalman filter/smoother in [3],
a pertinent norm-one regularization mechanism is used to
jointly recover the sensing matrix, associate sources with
sensors and track the source states. Further, power con-
straints are introduced to comply with a desired power
transmission budget (Section 3). A separable formulation
of the sparsity-aware Kalman formulation and applic-
ability of the ADMM toolbox is done in Section 4, resulting
an effective in-network algorithm. Different from the
preliminary work in [29] here (i) a more refined for-
mulation is provided; (ii) ad hoc topologies are considered
and distributed algorithms are derived; and (iii) rigorous
theoretical analysis accompanies the algorithmic con-
struction process. A discussion about the communication
and computational complexity can be found in Section 5,
whereas extensive numerical tests studying the perfor-
mance of the proposed framework are given in Section 7.

2. Problem statement

Consider a field sensed by a total of p sensors. Each
sensor, say j, acquires scalar measurements xj(t) at time
instant t ¼ 0;1;2;… . Sensor observations contain infor-
mation about r underlying sources sρðtÞ which are repre-
sented by the scalar random variables sρðtÞ, for ρ¼ 1;…; r.
Source signals stacked in the state vector st≔½s1ðtÞ…srðtÞ�T
evolve according to the model:

st ¼ Fst�1þut ; ð1Þ
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