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a b s t r a c t

Suppose that a solution ~x to an underdetermined linear system b¼ Ax is given. ~x is
approximately sparse meaning that it has a few large components compared to other
small entries. However, the total number of nonzero components of ~x is large enough to
violate any condition for the uniqueness of the sparsest solution. On the other hand, if
only the dominant components are considered, then it will satisfy the uniqueness con-
ditions. One intuitively expects that ~x should not be far from the true sparse solution x0. It
was already shown that this intuition is the case by providing upper bounds on J ~x�x0 J
which are functions of the magnitudes of small components of ~x but independent from x0.
In this paper, we tighten one of the available bounds on J ~x�x0 J and extend this result to
the case that b is perturbed by noise. Additionally, we generalize the upper bounds to the
low-rank matrix recovery problem.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let x0ARm denote a sparse solution of an under-
determined system of linear equations

b¼ Ax ð1Þ

in which bARn and AARn�m;m4n. Suppose that
Jx0 J0 ¼ k, where Jx0 J0 designates the number of nonzero
components or the ℓ0 norm of x0. Further, let spark ðAÞ
represent the spark of A, defined as the minimum number
of columns of A which are linearly dependent, and let
δ2kðAÞ denote the restricted isometry constant of order 2k

for the matrix A [1]. It is well known that if kospark ðAÞ=2
or δ2kðAÞo1, then x0 is the unique sparsest solution of the
above set of equations [1,2].

When the sparsest solution of (1) is sought, one needs
to solve

min
x

JxJ0 subject to Ax¼ b: ð2Þ

However, the above program is generally NP-hard [3] and
becomes very intractable when the dimensions of the
problem increase. Since finding the sparse solution of (1)
has many applications in various fields of science and
engineering (cf. [4] for a comprehensive list of applica-
tions), many practical alternatives for (2) have been pro-
posed [5–8]. If the solution obtained by these algorithms
satisfies one of the above sufficient conditions, then,
assuredly, this solution is the sparsest one.

Now, consider the case that the solution given by an
algorithm is only approximately sparse meaning that it has
some dominant components, while other components are
very small but not equal to zero. If the total number of
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nonzero components is large such that neither of the
mentioned conditions hold, it is not clear whether this
solution is close to the true sparse solution or not. How-
ever, intuitively, one expects that if the number of effective
components is small, then the obtained solution should
not be far away from the true solution. Immediately, the
following questions may be raised. Is this solution still
close to the unique sparse solution of b¼Ax? Is it possible
in this case to establish a bound on the error of finding x0

without knowing x0? Similar questions can be asked when
there is error or noise in (1). Taking the noise into account,
(1) is updated to

b¼Axþe; ð3Þ
where e is the vector of noise or error. In this setting, to
estimate x0 given b and A, the equality constraint in (2) is
relaxed, and the following optimization problem should be
solved:

min
x

JxJ0 subject to JAx�bJrϵ; ð4Þ

where ϵZ JeJ is some constant and J � J designates the
ℓ2 norm.

The answers to the above questions were firstly given
in [9]. Let ~x denote the output of an algorithm to find or
estimate x0 from (1) or (3). Particularly, [9] provides two
upper bounds on the error Jx0� ~x J . The first one is rather
simple to compute but turns out to be loose. On the other
hand, while the second bound is tight, generally, it is much
more complicated to compute.

Herein, in the spirit of the loose bound in [9], we provide a
better bound which is based on the same parameter of the
matrix A, but it is strictly tighter than the loose bound in [9].
Moreover, our proposed bound is obtained in a much simpler
way with a shorter algebraic manipulation. The proposed
bound is extended to the noisy setting defined in (3). Fur-
thermore, these results are also generalized to the problem of
low-rank matrix recovery from compressed linear measure-
ments [10].

The bounds introduced in this paper can be used in ana-
lyzing the theoretical performance of algorithms in sparse
vector and low-rank matrix recovery that provide approxi-
mately sparse or low-rank solutions such as [7,11,12].1 How-
ever, the bounds are obtained without any assumption on the
recovery algorithm, and it is possible to improve them by
exploiting properties of a specific algorithm. A similar upper
bound on the error of sparse recovery in the noisy case has
been proposed in [13]. This upper bound, however, is only
applicable when the given solution has a sparsity level, the
number of nonzero components, not greater than that of the
true solution, while our bounds are obtained under the
opposite assumption on the sparsity level of the given
solution.

The rest of this paper is organized as follows. After intro-
ducing the notations used throughout the paper, in Section 2,

we first present the upper bounds on the error of sparse
vector recovery and, next, generalize them to the low-rank
matrix recovery problem. Section 3 is devoted to the proofs of
the results in Section 2, followed by conclusions in Section 4.

Notations: For a vector x, JxJ ; JxJ1, and JxJ0 denote the
ℓ2, ℓ1, and the so-called ℓ0 norms, respectively. Moreover, x↓

denotes a vector obtained by sorting the elements of x in
terms of magnitude in descending order, and xi designates the
ith component of x. xI represents the subvector obtained from
x by keeping components indexed by the set I. A vector is
called k-sparse if it has exactly k nonzero components. For a
matrix A, ai denotes the ith column. Additionally, spark ðAÞ
and null ðAÞ designate the minimum number of columns of A
that are linearly dependent and the null space of A, respec-
tively. Similar to the vectors, AI represents the submatrix of A
obtained by keeping those columns indexed by I. It is always
assumed that the singular values of matrices are sorted in
descending order, and σiðXÞ denotes the ith largest singular
value of X. Let X¼ Pq

i ¼ 1 σiuivTi , where q¼ rank ðXÞ, denote
the singular value decomposition (SVD) of X. XðrÞ ¼Pr

i ¼ 1 σiuivTi represents a matrix obtained by keeping the r
first terms in the SVD of X, and Xð�rÞ ¼X�XðrÞ. JXJF denotes
the Frobenius norm, and JXJ�9

Pq
i ¼ 1 σiðXÞ, in which

q¼ rank ðXÞ, stands for the nuclear norm.

2. Upper bounds

In this section, the upper bounds on the error of sparse
vector and low-rank matrix recovery are presented.

2.1. Sparse vector recovery

Following the common practice in the literature of
compressive sensing (CS), we refer to b;A, and e in (3) as
the measurement vector, sensing matrix, and noise vector,
respectively. Before stating the results, we recall two
definitions.

Definition 1 (Candès [1]). For a matrix AARn�m and all
integers krm, the restricted isometry constant (RIC) of
order k is the smallest constant δkðAÞ such that

ð1�δkðAÞÞ‖x‖2r‖Ax‖2r ð1þδkðAÞÞ‖x‖2 ð5Þ
holds for all vectors x with sparsity at most k.

Definition 2 (Babaie-Zadeh et al. [9]). For a matrix
AARn�m, let σmin;pðAÞ40 for prsparkðAÞ�1 be the

smallest singular value of all m
p

� �
possible n� p sub-

matrices of A.

The following theorem presents the upper bounds for
both noisy and noiseless cases. We deliberately separate
the noisy and noiseless cases in order to be able to provide
a tighter bound in the noiseless setting.

Theorem 1. Let AARn�m, m4n, denote a sensing matrix.
We have the following upper bounds.

� Noiseless case: Suppose that x0 is a k-sparse solution of
Ax¼ b, where kosparkðAÞ=2. For all ~x solutions of Ax¼ b

1 It is worth emphasizing that the results presented in this paper are
theoretical in nature and can be used only to theoretically justify the
effectiveness of an algorithm. More precisely, as they are based on some
parameters of the sensing matrix, which cannot be computed in general,
these results cannot be used to experimentally evaluate the performance
of an algorithm.
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