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Non-negative matrix factorization (NMF) is one of the most important models for learning
compact representations of high-dimensional data. With the separability condition,
separable NMF further enjoys a global optimal solution. However, separable NMF is unable
to make use of data label information and thus unfavourable for supervised learning
problems. In this paper, we propose discriminative separable NMF (DS-NMF), which
extends separable NMF by encoding data label information into data representations.
Assuming that each conical basis vector under the separability condition is only con-
tributable to representing data from a few classes, DS-NMF exploits a structured sparse
regularization to learning a sparse data representation and provides higher discrimination
power than the standard separable NMF. Empirical evaluations on face recognition and
scene classification problems confirm the effectiveness of DS-NMF and its superiority to

separable NMF.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a data matrix X = [Xq, Xa, ..., Xp] € RP", containing
n nonnegative examples of p-dimensional vector space,
non-negative matrix factorisation (NMF) [22,23,21] finds
the a pair of nonnegative matrices Ae R" and Be R,
such that

X ~ BA. 1)

The columns of B consists of a basis for the representation
of X, while the columns of A store the coefficients of each
data example under such a basis. In general, the column
size r of B, i.e., the rank of the basis, is much less than the
original data dimensionality p. Therefore, NMF leads to
compact data representation and data compression. In
addition, the non-negativity of A and B generally gives rise
to more natural and interpretable data representations
than other matrix factorization methods [17,9], which
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makes NMF a favourable model for a wide-range of
applications, from text topic modelling, signal separation,
social networks, collaborative filtering, dimension reduc-
tion, sparse coding and feature selection.

Different metrics can be used to measure the approx-
imation residual between X and BA, such as matrix norms
or information-theoretic quantities (e.g., divergences), up
to the intention of modelling data properties. In this paper,
we use the Frobenius matrix norm to measure the
approximation residual, i.e., we optimize A and B by

min  IX—BAIZ )
AeR"Be Rp:'
However, it is worth emphasizing that the results of this
study is readily extendable to NMFs with other metrics.

1.1. Separable nonnegative matrix factorization

Although NMF provides a favourable approach for find
compact data representations, the computation of the
global optimal solution of (2) or forms with other metrics
for the approximation residuals is intractable. Most
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practical NMF algorithms [24,18,20,8,16] solve (2) with
local optima by alternating minimisation over A and B
using different heuristics. It has been proved that NMF is
generally NP-hard [31]. In addition, the non-convexity of
NMF makes it difficulty to find a unique and globally
optimal factorization. To overcome the above-mentioned
drawbacks of NMF, additional assumptions on the data
matrix can be used to transfer the original NMF into more
amiable problems. In [9], the authors proposed the
separability assumption on the data matrix X and showed
that this ensures NMF to have a unique factorisation. The
separability assumes that there exits a subset of columns
Xz of X such that the rest of columns can be represented by
a nonnegative combination of X7. Therefore, NMF with the
separable assumption reduces to finding the subset index
7 and the coefficients of representing X under Xz.

Definition 1.1 (Separability). A data matrix X is called
separable if there is a subset index Z c[n], |Z| =k, and a
permutation matrix /7 such that

X =XzA, with A=[l A 3)
where I, is the identity matrix of size k and A’ e R®*"=0,

Geometrically, the separability of X can be interpreted
as: the data examples in X; generates a convex cone cone
(X7), and the other data examples in X are located within
cone (X7). Since a finitely generated convex cone has a
unique set of extreme rays from its generators, NMF with
the separable assumption is unique. Further, if we can
allow approximate data representation or noise con-
tamination, separable NMF can be formulated into

min X7 — XAl
1A

subjectto Z c[n],|Z|=k
IT is a permutation matrix

A=l A] AerfmH @)

In addition, under the mild regularity condition that X;
cannot be represented by combinations of the rest of the
examples in X, it is possible to get rid of the permutation
matrix /7 by using the following equivalent form of (4)

. 2
r?%n IX—XzAlg
subject to Z C [n], |Z| = k, A e R**™ (5)

Several algorithms have been developed to solve the
separable NMF Eq. (4) or (9.) [3,5,12,14], which are com-
monly motivated by the geometric interpretation of the
separability of X. Specifically, these algorithms apply linear
programming (LP) to detect the extreme rays or generators
Xz of the convex cone cone(X7) and to find the combina-
tion weights of the rest of examples in X. Very efficient
algorithms for separable NMF have also been proposed by
using recursive projections [13]| and randomised methods
[33]. In addition, by using the idea of group sparsity, the
separable NMF problem (5) can be relaxed into

n
. _ 2 .,
Vl}gr})\\x XWIIF+Qi§:] TW(@,:)ll,, (6)

from which the index Z can be recovered by the nonzero

rows of the optimal W and the coefficient matrix A can be
obtained by A=W(Z,:), i.e., the nonzero rows. Such for-
mulation has been used for unmixing hyperspectral ima-
ges in a blind and fully constrained manner [1].

1.2. Notations

Throughout this paper, we use the following notations.
Upper letter A denotes a matrix. Az or A(:,Z) denotes a
sub-matrix of A, where 7 is an index variable and A; is
composed by the corresponding columns of A indexed by
Z.A(i, ;) denotes the i-th row of A. Lower letter a denotes a
vector or a scalar. a(Z) denotes as sub-vector of a, indexed
by Z. [n] denotes the set {1,2,...,n}. Al denotes the
Frobenius norm of matrix A. llall, denotes the #; norm of
vector a. VL(-) denotes the gradient of the loss function
L(-). T1 N I, denotes the intersection between index sets
71 and Z,. T is the complementary of index set Z with
respect to [n].

2. Discriminative separable nonnegative matrix
factorisation

In the separable NMF (5), the coefficient matrix A
provides a compact representation of original high-
dimensional example in the data matrix X. However,
such representation does not encode any discriminative
information, if we know the labels of the data examples. To
address this limitation of separable NMF in the supervised
setting, we propose to exploit structured sparse regular-
ization to construct a discriminative separable NMF (DS-
NMF), so that the obtained low-dimensional representa-
tion A is more favourable for classification.

2.1. Discriminative separable NMF by structured sparse
regularisation

Suppose the data examples in X are categorized into m
classes. DS-NMF is built upon the assumption that each
example X; in the conical basis X7 , i € Z, only responds to a
small number of the m classes, i.e., the corresponding row
A(i,:) of the coefficient matrix A is sparse in terms of the
class distribution of the data examples. This motivates us
to propose the following structured sparse regularization:

k k m
RA) =D RAG:)N=>_ Y IAGZOI, (7)
Tlc=1

i=1 i=

where Z. is the index set of the c-th class, i.e.,
Zc={j:xje X is in the c — th class}. For each row of A,
S04 IAG,Z) Nl is actually a mixed #,/¢#1 norm over
A(,:). It has been shown in recent studies on sparse
learning that such mixed norm is powerful in encouraging
group sparsity. In particular, if 1A(i,Z)Il; =0 for a certain
class c, it implies that X; e X7 does not contribute to the
representation of the examples from that class.

Based upon separable NMF (5) and the structured
sparse regularization R(A) in (7), we define DS-NMF as the
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