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a b s t r a c t

This paper presents amethod that generates initial estimates for a rather general block-structuredmodel,
starting from the (more general) polynomial nonlinear state-spacemodel. The considered block-structure,
sometimes referred to as Linear Fractional Transformation (LFT) or Linear Fractional Representation (LFR),
encompasses several simpler structures. It can e.g. describeWiener, Hammerstein,Wiener–Hammerstein
and nonlinear feedback structures. In fact, the chosen block-structure is the most general representation
of a system with one Single-Input Single-Output (SISO) static nonlinearity. As is quite common in block-
structure identification, the states and internal signals are assumed to be unknown. Themethod gradually
imposes the structure of the LFR system, and at the same time finds an estimate of the Multiple-Input
Multiple-Output (MIMO) linear dynamic part and the static nonlinearity (SNL). The method is illustrated
via an experimental-data example.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Goal, model description and related literature

The aim of this paper is to generate initial estimates for the
identification of the block-structuredmodel shown in Fig. 1 (which
will be termed ‘‘Poly-LFR’’ from now since the static nonlinearity
is assumed to be polynomial), from input–output data (a Single-
Input Single-Output (SISO) system is assumed for simplicity).
The model consists of a MIMO linear dynamic block (which can
be decomposed in four SISO linear dynamic blocks) and one
static nonlinearity (SNL). The attractive aspect of this structure
is its possibility to represent several other nonlinear block-
structures, such as Wiener, Hammerstein, Wiener–Hammerstein
and nonlinear feedback structures. In fact, it is the most general
representation of a system with a single SISO SNL.

An identification method for the Poly-LFR model structure is
explained in Vandersteen and Schoukens (1999), but is based

✩ The material in this paper was partially presented at the 16th IFAC Symposium
on System Identification (SYSID 2012), July 11–13, 2012, Brussels, Belgium. This
paper was recommended for publication in revised form by Associate Editor Brett
Ninness under the direction of Editor Torsten Söderström.

E-mail addresses: Anne.Van.Mulders@vub.ac.be (A. Van Mulders),
Johan.Schoukens@vub.ac.be (J. Schoukens), Laurent.Vanbeylen@vub.ac.be
(L. Vanbeylen).
1 Tel.: +32 2 629 29 79; fax: +32 2 629 28 50.

Fig. 1. Poly-LFR block structure with one static nonlinearity. Herein, the Gij
represent linear dynamic blocks.

on time-consuming two-tone excitations and can only handle
nonlinear degrees up to 3. The method to be presented can deal
with more general excitation signals and has no limitations with
respect to the nonlinear degree. The LFR model structure also
appears – in a different context – in e.g. Ishido, Takaba, and
Quevedo (2011) and Novara, Vincent, Hsu, Milanese, and Poolla
(2011) and the references herein.

1.2. Identification of the model

This paper proposes a two-step method to generate initial
estimates of the Poly-LFR model: (i) a low-rank version of the
Polynomial Nonlinear State-Space (PNLSS) model (Paduart et al.,
2010) is estimated; (ii) the necessary conditions are imposed on
it. Since the low-rank PNLSS is more general than the Poly-LFR,
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the method can be regarded as an overparameterisation approach.
Directly identifying the Poly-LFR from a linear initialisation leads
to an increased risk of local minima compared to the proposed
method.

1.3. Paper outline

In Section 2, assumptions on the model structure and other
properties of the method are discussed. Section 3 presents
respectively the PNLSS model structure and the target block-
structured model, together with the interconnection between
both. Section 4 explains how to obtain a low-rank description
of the nonlinear parameter matrices. Section 5 discusses how
to analytically determine the linear combination of states and
input(s) that can be used as input of the SNL, as well as the
computation of the SNL’s parameters. The method is summarised
in Section 6. An experimental-data example and conclusions can
be found in respectively Sections 7 and 8.

2. Properties of the method

The proposed method avoids two common difficulties of the
identification of block-structures: the identification of the separate
subblock model orders and their parametric initialisation. In our
approach, the following four main assumptions are made:

• there is only one SNL in the system;
• the direct-feedthrough matrix of G22 is zero, i.e. there is no

direct term in the feedback branch;
• the SNL is of polynomial kind;
• the input signal used for identification is persistently exciting2

the system.

The method does not need any special kind of excitation signal,
or explicit knowledge of the model orders of the four linear blocks.

3. PNLSS model and target (Poly-LFR) model

Discrete-time state-space models are used throughout this
paper. The states are assumed to be unknown and the final model
shouldminimise the least-square error between themeasured and
modelled output.

Both the PNLSS model and the Poly-LFR model have structural
degenerations that yield the same input–output behaviour.
However, this is not an issue in this paper, since the only goal of the
identification is to find amodel that has an input–output behaviour
similar to the true system.

3.1. PNLSS model structure

As is very well known, state-space models are well suited
for multiple-input multiple-output (MIMO) systems. The PNLSS
model is a conventional linear state-space model extended with
polynomial terms Eζ and Fζ :

x(t + 1) = Ax(t)+ Bu(t)+ Eζ (x(t), u(t))
yθ (t) = Cx(t)+ Du(t)+ Fζ (x(t), u(t)) (1)
y(t) = yθ (t)+ e(t)

2 The input signal u∗ is said to be persistently exciting at θ∗ if

yθ (u∗) = yθ∗ (u∗) ⇒ M(θ∗) = M(θ)

with yθ (u) the response of the system to input signal u and manifold M(θ) =
θ1|∀u, yθ1 (u) = yθ (u)


defining the degeneracies of the model.

x(t) ∈ Rn are the states and u(t) ∈ Rnu and y(t) ∈ Rny are the
input and output. n is the model order, nu is the number of inputs
and ny is the number of outputs. The top and bottom equations are
called state and output equation. The input u(t) is assumed to be
known exactly and the output measurements y(t) are corrupted
via the noise term e(t) ∈ Rny (with coloured Gaussian noise
with zero mean and finite variance). Under these assumptions, the
weighted least-squares estimator corresponds to the maximum-
likelihood estimator, which is asymptotically consistent, efficient
and normally distributed (Kendall & Stuart, 1979). The vector ζ ∈

Rnζ contains monomials in x(t) and u(t); the matrices E ∈ Rn×nζ

and F ∈ Rny×nζ contain the coefficients associated with those
monomials. A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu are
constant coefficient matrices. The parameter vector is defined as

θ T =

vec(A)T vec(B)T vec(C)Tvec(D)T vec(E)T vec(F)T


. (2)

From now on, although the method can easily be extended, only
SISO systems (nu = ny = 1) are considered.

An identification method for this model is described in Paduart
et al. (2010).

3.2. The target (Poly-LFR) block-structure

In this section, the equations of the Poly-LFR model are shown
in their PNLSS form. First consider the state-space representation
of the MIMO linear part, in which an explicit distinction between
the contributions from u = u1, u2 to yψ = y1 and y2 is made:

x(t + 1) = Ax(t)+

B BNL

 
u(t)
u2(t)



yψ (t)
y2(t)


=


C
CV


x(t)+


D DNL
DV D22 = 0

 
u(t)
u2(t)


y(t) = yψ (t)+ e(t) (3)

with

u2(t) =

d
p=1

αpy
p
2(t)

and ψ the parameter vector of the Poly-LFR model. The nonlinear
part determines the static polynomial relation between y2 and u2.

Rewriting the state- and true output equations yields

x(t + 1) = Ax(t)+ Bu(t)+ BNLu2(t)
yψ (t) = Cx(t)+ Du(t)+ DNLu2(t)

(4)

which, knowing that

u2(t) =

d
p=1

αp (CV x(t)+ DVu(t))p (5)

is a PNLSSmodel (1). In the following, without loss of generality, A,
B, C and D in (4) are assumed to be redefined such that α1 = 0 in
(5), and the representation fits betterwith (1), inwhichmonomials
of degree 2 to d are considered.

For convenience, expression (5) is rewritten in terms of the
monomials as

u2(t) = V T
1 ζ (x(t), u(t)) . (6)

Equating (4) and (6) with (1) results in
E
F


=


BNL
DNL


V T
1 .

The nonlinear terms are restricted in two ways:

(1) (E; F) is a rank-1 matrix: (E; F) = U1V T
1 , with U1 = (BNL;DNL)

a single column and V T
1 a single row.



Download English Version:

https://daneshyari.com/en/article/695893

Download Persian Version:

https://daneshyari.com/article/695893

Daneshyari.com

https://daneshyari.com/en/article/695893
https://daneshyari.com/article/695893
https://daneshyari.com

