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A constructive approach to stabilize a desired equilibrium for a class of underactuated mechanical sys-
tems, which obviates the solution of partial differential equations, is proposed. The Immersion & Invariance
methodology is adopted, with the main result formulated in the Port-Hamiltonian framework, for both
model and target dynamics. The procedure is applicable to mechanical systems with under-actuation de-
gree larger than one, extending the results recently reported by some of the authors. The approach is

successfully applied to two benchmark examples and some basic connections with the interconnection
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and damping assignment passivity-based control are revealed. An additional contribution of this work is
the identification of a class of mechanical systems whose mechanical structure remains invariant under
partial feedback linearization.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilization of mechanical systems has been a central prob-
lem in the control community for several decades. Many research
groups have been active in studying such systems, proposing dif-
ferent control laws and applying them to various examples. Among
the systematic control design techniques it is worth mentioning
those based on Controlled Lagrangians (CL) (Bloch, Leonard, &
Marsden, 2000) and the Interconnection and Damping Passivity-
Based Control (IDA-PBC) (Ortega, Spong, Gomez-Estern, & Blanken-
stein, 2002) — see Blankenstein, Ortega, and van der Schaft (2002)
for their connection. The applicability for both methods is re-
stricted by the need to solve a set of partial differential equations
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(PDESs). In Acosta, Ortega, Astolfi, and Mahindrakar (2005) explicit
solutions of the PDEs of IDA-PBC are given for a class of mechan-
ical systems with under-actuation degree (or co-dimension) one,
i.e., the number of available actuators is less than the number of
degrees of freedom by one. To the best of our knowledge, no sim-
ilar constructive result is available for systems with higher under-
actuation degree.

With the motivation to avoid the need of solving PDEs, in
Acosta, Ortega, Astolfi, and Sarras (2008) the use of the Immersion
and Invariance (I&I) methodology for the problem of stabilization
of mechanical systems was explored, and a successful application
to the cart-pendulum system was reported. The I&I approach for
the stabilization of nonlinear systems was introduced in Astolfi and
Ortega (2003) and developed further in a series of publications that
have been recently summarized in Astolfi, Karagiannis, and Ortega
(2007). In the I&I approach the desired behaviour of the system to
be controlled is captured by the choice of a target dynamical sys-
tem of lower dimension than the original system. The control ob-
jectiveis to find a controller, which guarantees that the closed-loop
system asymptotically behaves like the target system—achieving
in this way asymptotic model matching. This should be contrasted
with the more restrictive exact matching techniques of the CL and
IDA-PBC methodologies. This is formalized by finding a manifold
in the extended state-space that can be rendered invariant and at-
tractive, with internal dynamics a copy of the desired closed-loop
dynamics, and designing a control law that steers the state of the
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system towards the manifold. The main idea introduced in Acosta
et al. (2008) is to leave some of the parameters of the target dy-
namics free, namely the potential energy function and the damp-
ing injection matrix, and use them as degrees of freedom to solve
the PDEs. In this work we pursue this line of research, with par-
ticular emphasis in providing constructive solutions for mechan-
ical systems with an even number of configuration variables and
under-actuation degree larger than one.

The paper is organized as follows. Section 2 presents a version
of I&I for the case where the original and the target systems are
mechanical systems described in Port-Hamiltonian (pH) form. The
design procedure is described in Sections 3 and 4. In Section 5 the
results are illustrated with two physical examples: the inertia
wheel pendulum and the inverted pendulum on a cart, where
experimental results of the former are reported. The paper is
wrapped-up with a section on conclusions. Appendices A and B are
devoted to identify a class of mechanical systems for which par-
tial linearization transforms the system to the form required by the

paper.

2. Port-Hamiltonian formulation of I&I for underactuated
mechanical systems

In this section we present the main stabilization result of Astolfi
and Ortega (2003) when both, the model and the target dynamics,
are mechanical systems given in pH form. Thus, we consider n
degrees-of-freedom under-actuated mechanical systems modelled
as

Tal _ [veHT o 1
x: [p] = [vaT +G@u, T=|_ gl (1)
where G(q) = [0G(q)]", q, p € R" are the generalized positions

and momenta, respectively, u € R™ are the control inputs, H :
R"™ x R" — Ris the total energy of the system, given as

1
H(q,p) = EpTM—l(cnp +V(q), )

where M = MT > 0and V is the potential energy function, G €
R™™ has constant rank m < n. Following the main result of Astolfi
and Ortega (2003), we state the next theorem for the class of pH
mechanical systems that admit as target system another (lower-
order) pH mechanical system.

Proposition 1. Consider the system (1), with x = col(q, p) and an
equilibrium point x* = col(q*, 0) € R?" to be stabilized. Let s < n
and assume we can find mappings

M; : R® — R¥; V; : R — R;
T RZS N Rzn. RZS N Rm.
W Rzn N Rz(nfs). w . RZn % RZ(nfs) N Rm.
such that the following hold.

(H1) (Target system) The system

. 5 _ _ quHtT
o [g] = or-mo ]

=5 8] 3

where R (£) := diag(0, R,(£)), state & = col(&,. &), &. & €
R®, the Hamiltonian H; : R x R® — R

RZS — Rsxs;

1 _
He(Ee, &) = 56 M (6% + V(o). 4)
has an asymptotically stable equilibrium at £* = col(¢],0) €
R and
X = (). (5)

(H2) (Immersion condition)? For all & € R
[IVHT (x) + G)c®)] lx=re)
= Vr(§)(Je — Re(§))VH, . (6)
(H3) (Implicit manifold) The following set identity holds
{x € R*"|u(x) = 0}
= {x € R?"|x = (&) for some & € R™}. (7)

(H4) (Manifold attractivity and trajectory boundedness) All trajecto-
ries of the system

2=Vu [IVH" + Gy (x,2)], (8)
x=JVH" + Gy (x,2), (9)
are bounded and satisfy lim;_, o, z(t) = 0.

Then, x, is an asymptotically stable equilibrium of the system
(1) in closed-loop with the control u = ¥ (x, w(x)).

In the next section the degrees of freedom provided by the target
dynamics are used to solve the PDEs (6) from (H2) and in Section 4
we take care of the remaining conditions of Proposition 1.

3. Explicit solution of the PDEs of the immersion condition

The assumption below identifies the class of systems that we
consider in the paper. To streamline the assumptions, we introduce
the partition g = col(q1, 42), Gi € R%, i=1,2.

Assumption A.1. The system (1) satisfies the following conditions

(C1) n=2m.

(C2) The inertia matrix is block diagonal, i.e. M := diag(My;, M33)
with M; € R™™ i =1, 2 constant.

(C3) The potential energy function and the input matrix depend

only on one of the coordinates q;, i = 1, 2. Without loss of
generality (see below), we assume i = 1,i.e,V = V(qy) and
G = G(qq).

The following remarks are in order.

e Condition (C1)isintroduced to obtain square matrices that sim-
plify the notation in the sequel—avoiding the need of pseudo-
inverses.

e The assumption of constant, block-diagonal, inertia matrix is
clearly restrictive. However, there are cases where either a
change of coordinates (Venkataraman, Ortega, Sarras, & van der
Schaft, 2010) or a partial feedback linearization (Spong, 1998)
transforms the system into this form. Moreover, in Appendix A
we identify a class of systems for which partial feedback lin-
earization yields another mechanical system that—as is well-
known—is in general not the case.

e Condition (C3) is a technicality, needed to obtain explicit
expressions—notice that a similar assumption is made in Acosta
etal. (2005). As shown, the choice i = 1in (C3) is done without
loss of generality. The case where the functions depend on ¢,
can be handled with a suitable redefinition of the mapping  in
(10).

2 When clear from the context the argument of the differential operator V is
omitted.
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