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a b s t r a c t

A general maximum principle for optimal control problems derived by forward–backward stochastic
systems is established, where control domains are non-convex and forward diffusion coefficients
explicitly depend on control variables. These optimal control problems have broad applications in
mathematical finance and economics such as the recursivemean–variance portfolio choice problems. The
maximum principle is applied to study a forward–backward linear-quadratic optimal control problem
with a non-convex control domain; an optimal solution is obtained.
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1. Introduction

Since the introduction of nonlinear backward stochastic
differential equations (BSDEs) (Pardoux & Peng, 1990), there has
been an increasing research interest about optimal control derived
by BSDEs or forward–backward stochastic differential equations
(FBSDEs). See e.g. the references Bahlali, Boulekhrass, and Mezerdi
(2011), Dokuchaev and Zhou (1999), El Karoui, Peng, and Quenez
(1997), Huang, Li, and Wang (2010); Huang, Wang, and Xiong
(2009), Meng (2009), Peng (1993), Shi and Wu (2010), Wang and
Wu (2009), Wang and Yu (2010, 2012), Wu (2010) and Xu (1995).
Although there exist lots of works about maximum principle
for FBSDEs control system, yet the related general case, i.e., the
control domain is not necessarily convex and the forward diffusion
coefficient explicitly depends on some control variables, is still
an open and unsolved problem (Peng, 1999). From the author’s
viewpoint, the main difficulty in solving this open problem is
how to use a suitable variational technique to treat a backward
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control systemwith an extra variable z. Because z is different from
the other state variables x and y, we cannot deal with it using
some standard variational techniques. Then a certain new idea is
expected to be found.

Recently, Kohlmann and Zhou (2000) studied the relationship
between a BSDE and a forward linear-quadratic (LQ) optimal
control problem. They regard the martingale term in the BSDE as a
control and then introduce a new stochastic control problem with
the same dynamics as the BSDE but a definite given initial state, in
which the optimization goal is to minimize the second moment of
the difference between the terminal state and the terminal value
given in the BSDE. Based on Kohlmann and Zhou (2000), Lim and
Zhou (2001) investigated a backward LQ optimal control problem.

Inspired by Kohlmann and Zhou (2000) and Lim and Zhou
(2001), this paper focuses on studying the open problem in
Peng (1999). The rest of this paper is organized as follows. In
Section 2, the problem is formulated. Section 3 establishes a
general maximum principle for the optimal control problem.
Section 4 studies an LQ casewith a non-convex control domain. The
general maximum principle established in this paper is applied to
find an optimal solution. Section 5 lists some concluding remarks.

2. Formulation of the optimal control problem

Let (Ω, F , (Ft)0≤t≤T , P) be a filtered complete probability
space, on which an R-valued standard Brownian motion (Bt)t≥0
is defined with Ft being its natural filtration, F = FT , and T
is a constant. The case of multi-dimensional standard Brownian
motion is similar, and hence is omitted for simplicity.
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2.1. Motivation

Suppose there are two kinds of securities in a market for
possible investment choices. (i) A risk-free security (e.g. a bond):
dS0(t) = r(t)S0(t)dt, S0(0) > 0, where r(t) is a bounded
deterministic function. (ii) A risky security (e.g. a stock): dS1(t) =

µ(t)S1(t)dt + σ(t)S1(t)dBt , S1(0) > 0, where µ(t), σ (t) ≠ 0 are
bounded deterministic functions, and µ(t) > r(t) is required. Let
v(t) denote the amount invested in the risky security. Given the
initial wealth x(0) = x0, the wealth dynamics is
dx(t) = [r(t)x(t) + (µ(t) − r(t))v(t)]dt + σ(t)v(t)dBt ,
x(0) = x0,

(2.1)

where v(t) can be negative whichmeans short-selling of the stock.
Usually, it is reasonable that there are some constraints on the
range of values of v(t). For example, let v(t) belong to U =

(−∞, −1]∪[1, +∞). It implies that there is aminimumconstraint
for v(t) in the market. Let Uad be the set of admissible portfolios
valued in U ⊂ R, a > 0, b > 0 and Q are constants, β(·) and
γ (·) are deterministic functions. Then themean–variance portfolio
choice problem is to find an admissible v∗(·) such that J(v∗(·)) =

infv(·)∈Uad
1
2E[(x(T )−a)2+(y(0)−b)2] subject to (2.1)–(2.2),where

y is a recursive utility from wealth x, which is the solution of
−dy(t) = (−β(t)y(t) + γ (t)v(t))dt − z(t)dBt ,
y(T ) = Qx(T ).

(2.2)

See e.g. El Karoui et al. (1997) for more information. Clearly, this
is an LQ optimal control problem of an FBSDE system with a
controlled diffusion and non-convex control domain.

2.2. Problem A

Consider the controlled FBSDEdx(t) = g(t, x(t), v(t))dt + σ(t, x(t), v(t))dBt ,
dy(t) = f (t, x(t), y(t), z(t), v(t))dt + z(t)dBt ,
x(0) = a, y(T ) = Φ(x(T )),

(2.3)

where (x(·), y(·), z(·)) ∈ Rn
×Rm

×Rm, v(·) is the control process,
and g : [0, T ]×Rn

×Rk
−→ Rn, σ : [0, T ]×Rn

×Rk
−→ Rn, f :

[0, T ] ×Rn
×Rm

×Rm
×Rk

−→ Rm, Φ : Rn
−→ Rm. Let U be a

non-empty subset ofRk, which is not necessarily convex. A control
variable v(·) is called admissible, if v(t) is an Ft-adapted process
valued inU and satisfies sup0≤t≤T E|v(t)|ι < +∞, ∀ι = 1, 2, . . . .
The set of all admissible controls is denoted by Uad. For any v(·) ∈

Uad, the cost functional is in the form of

J(v(·)) = E

 T

0
l(t, x(t), y(t), z(t), v(t))dt

+ h(x(T )) + γ (y(0))


, (2.4)

where l : [0, T ] × Rn
× Rm

× Rm
× Rk

−→ R, h : Rn
−→ R,

γ : Rm
−→ R. The optimal control problem under consideration

in this paper is

Problem A. To find an admissible v∗(·) such that

J(v∗(·)) = inf
v(·)∈Uad

J(v(·)). (2.5)

If such a v∗(·) attains the infimum, then we call it an optimal
control. Eq. (2.3) is called the optimal state equation, and the
solution (x∗(·), y∗(·), z∗(·)) corresponding to v∗(·) is called an
optimal trajectory.

The objective of this paper is to establish a general maximum
principle of Problem A. Note that Problem A is related to Bahlali

(2008), where g, σ , f , l are bounded and U is compact. It is
well known that the adjoint equation plays an important role in
deriving maximum principle. Since U is not convex and v enters
into σ , it is necessary to formulate a suitable second-order adjoint
equation for the backward system. However, the backward one is
so complicated that it is difficult to construct such an equation.
Thus the classical method cannot be directly used here. As found
in Kohlmann and Zhou (2000) and Lim and Zhou (2001), z can be
regarded as a control variable while y(T ) = Φ(x(T )) in (2.3) a
terminal state constraint. Fix v, we can choose the control z as well
as y(0) so that y(T ) exactly hits the targetΦ(x(T )). Inspired by this,
we formulate a variation of Problem A below.

Problem B. Minimize

J(y0, u(·), v(·)) = E

 T

0
l(t, x(t), y(t), u(t), v(t))dt

+ h(x(T )) + γ (y0)


(2.6)

over y0 ∈ Rm, u(·) ∈ L2
F (0, T ;Rm), v(·) ∈ Uad subject to the

forward control systemdx(t) = g(t, x(t), v(t))dt + σ(t, x(t), v(t))dBt ,
dy(t) = f (t, x(t), y(t), u(t), v(t))dt + u(t)dBt ,
x(0) = a, y(0) = y0,

(2.7)

with an optimal state constraint

E|y(T ) − Φ(x(T ))|2 = 0. (2.8)

Note that Problem A is embedded into Problem B, according to
the optimal control (y∗

0, u
∗(·), v∗(·)) of Problem B, we know that

v∗(·) is an optimal control of Problem A, y∗

0 is the initial value of
the optimal trajectory y∗(·), and u∗(·) = z∗(·) in (2.3). However,
Problem B can be solved by using the classical second-order
variational technique (Peng, 1990).

3. A general maximum principle

Let us impose some assumption conditions on the coefficients
of Problem A.

Hypothesis (H). (i) f , g, σ , Φ, l, h and γ are twice continuously
differentiable with respect to (x, y, z). (ii) The derivatives up to
order 2 of f , g, σ and Φ with respect to (x, y, z) are bounded.
(iii) f , g, σ , Φ, lx, ly, lz, hx and γy grow linearly about (x, y, z, v)
and is continuous in (t, v). (iv) lxx, lxy, lxz, lyz, lyy, lzz, hxx and γyy are
bounded.

We now try to solve Problem B. Define a metric d(·, ·) in Uad
and L2

F (0, T ;Rm), d(u(·), v(·))
.
= E[mes{t ∈ [0, T ], u(t) ≠

v(t)}], ∀u(·), v(·) ∈ Uad or L2
F (0, T ;Rm), where mes de-

notes the Lebesgue measure. Then it is easy to verify that
(L2

F (0, T ;Rm), d(·, ·)) or (Uad, d(·, ·)) is a complete metric space.
Suppose (y∗

0, u
∗(·), v∗(·)) is an optimal control of Problem B

and (x∗(·), y∗(·)) is the corresponding optimal state trajectory of
(2.7) which satisfies y∗(T ) = Φ(x∗(T )). Then it is easy to see
that J(y∗

0, u
∗(·), v∗(·)) ≤ J(y0, u(·), v(·)) for any y0 ∈ Rm, u(·) ∈

L2
F (0, T ;Rm), v(·) ∈ Uad. For any (y0, u(·), v(·)) ∈ Rm

×

L2
F (0, T ;Rm) × Uad, we let (xv(·), yv(·)) be the solution of (2.7).

Note that (xv(·), yv(·)) does not necessarily satisfy yv(T ) =

Φ(xv(T )) here. Define a new cost functional Jρ by

Jρ(y0, u(·), v(·))
.
= {[J(y0, u(·), v(·)) − J(y∗

0, u
∗(·), v∗(·))

+ ρ]
2
+ [E|yv(T ) − Φ(xv(T ))|2]2}

1
2 , (3.1)
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