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In this paper, we address the problem of locating a target using multiple-input multiple-
output (MIMO) radar with widely separated antennas. Through linearizing the bistatic
range measurements, which correspond to the sum of transmitter-to-target and target-to-
receiver distances, a quadratically constrained quadratic program (QCQP) for target
localization is formulated. The solution of the QCQP is proved to be an unbiased position
estimate whose variance equals the Cramér-Rao lower bound. A weighted least squares
algorithm is developed to realize the QCQP. Simulation results are included to demon-
strate the high accuracy of the proposed MIMO radar positioning approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Target localization [1] has been one of the central
problems in many fields such as radar [2], sonar [3],
telecommunications [4], mobile communications [5], sen-
sor networks [6] as well as human-computer interaction
[7]. Recently, this topic has also received considerable
interest in multiple-input multiple-output (MIMO) radar
[8-13]. Unlike the conventional phased-array radar which
deals with a single waveform, MIMO radar employs multi-
ple antennas to transmit and receive different waveforms
and process the received signals. The MIMO radar with
colocated antennas utilizes waveform diversity while that
with widely separated antennas provides spatial diversity,
and both of them are superior to its phased-array counter-
part in many aspects. In this work, we address target
localization using the latter architecture.
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Generally speaking, MIMO radar positioning with distrib-
uted antennas can be classified as direct and indirect
approaches. In the former, the target location is estimated
via processing the observed receiver outputs directly, and
representative examples include the maximum likelihood
(ML) [9,10] and sparse recovery [11] methods. On the other
hand, there are two steps in the indirect approach. First, the
time delay information, which corresponds to the sum of the
signal propagation time from a transmit antenna to the
target and that from the target to a receive antenna, is
estimated from the received data. In the second step, we
multiply these delays by the known signal propagation
speed to yield the bistatic range estimates for constructing
a set of elliptic equations from which the source position can
be determined. Godrich et al. [9] have proposed a best linear
unbiased estimator (BLUE) by linearizing the elliptic equa-
tions via Taylor series expansion [14] while a different
linearization scheme is devised in [12], which results in
solving two sets of linear equations. We refer the latter
solution to as the combined linear least squares (CLLS)
method. Although the BLUE is superior to the CLLS solution
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and can attain ML performance, an initial position estimate
which is sufficiently close to the source location is required.
Generally speaking, the direct methods are more computa-
tionally demanding than the indirect approach. For example,
according to [9], when the ML estimator is realized by a grid
search, a significant computational effort is involved. The
complexity of the sparse modeling approach [11] is also high
because convex optimization is involved. Inspired by the
linearization approach of Chan and Ho [15], we devise an
accurate indirect positioning approach for distributed MIMO
radar where no algorithm initialization is needed. Our
contributions can be summarized as (i) the problem of
solving the elliptic equations constructed from the bistatic
range estimates is converted to a quadratically constrained
quadratic program (QCQP); (ii) we have proved that under
sufficiently small noise conditions, the solution of the QCQP
is an unbiased estimate of the target location and its variance
is equal to the optimality benchmark, namely, the Cramér-
Rao lower bound (CRLB); and (iii) analogous to the relaxation
technique in [15], we develop a weighted least squares
(WLS) estimator for solving the QCQP.

The rest of the paper is organized as follows. In Section
2, the problem of distributed MIMO radar positioning is
formulated. In Section 3, we first convert the target
localization formulation to a QCQP. Bias and mean square
error (MSE) of the estimate of the QCQP are also analyzed.
The WLS algorithm for realizing the QCQP is then devel-
oped. Simulation results are presented in Section 4 to
evaluate the localization accuracy of the proposed
approach by comparing with the CLLS method and the
CRLB. Finally, conclusions are drawn in Section 5.

The notation is introduced as follows. Scalars, vectors
and matrices are denoted by italic, bold lower-case and
bold upper-case symbols, respectively. An estimate of a is
denoted by a. The ith element of a and (i) entry of A are
represented as [a]; and [A];;, respectively. Moreover, [A]j; .
contains entries in the intersection of the ith to the jth
rows and the kth to the Ith columns. The Euclidian norm of
a is denoted by [|a|l>. The T and ~! denote the matrix
transpose and inverse, respectively, while E is the expecta-
tion operator. The diag(a;,a,, ...,a;) is a diagonal matrix
with diagonal elements ay,ay, ..., a,. The 0;,; and I; repre-
sent the ixj zero matrix and ixi identity matrix,
respectively.

2. Problem formulation

We consider finding the position of a target, denoted by
x=[xy]", using a distributed MIMO radar system with M
transmit and N receive antennas whose coordinates,
X =, v, m=1,2,...M, and X,=[xy.]", n=
1,2,...,N, respectively, are known. Note that although we
assume two-dimensional positioning, extension to the three-
dimensional case is straightforward. Suppose the transmit
antennas send a set of orthogonal waveforms with center
frequency f. and bandwidth Af. Let s,,(t) be the low-pass
equivalent of the emitted signal from the mth transmitter.
The transmitted waveforms are reflected by the target and
then collected at the receive antennas. In the case of
coherent processing where the receivers are phase-synchro-
nized, the signal measured at the nth antenna, denoted by

z,(t), is [9,12]

M
Zn(f) = Z Amn€XP{ —J27f T n}Sm(t — Tmn) +Wn (D). (1
m=1

Here, am is the amplitude corresponding to the path from
the mth transmitter to the nth receiver, 7, , is the sum of the
signal propagation time from the mth transmitter to the
target and the time from the target to the nth receiver,
denoted by 7¢, and 7, respectively, and w(t) is the zero-
mean complex Gaussian noise which is temporally and
spatially white with variance afv. That is, 7, can be
decomposed as

Ton=7,+7, m=1,2,..,M, n=1,2,...,N 2)

Denoting the wave propagation speed by ¢, 7!, and 7}, can
also be expressed as

1 1
T = 2lIXi —Xll2 = /(X =) + ¥y —9)° 3)
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For non-coherent processing model where the receive
antennas are not phase-synchronized, the observed signal
becomes [9,12]

M
Zn(t) = Z OmnSm(t —Tmn) +Wn(0). (5)
m=1

In the direct approach, x is determined directly from (1)
or (5). In this work, our focus is on the indirect approach
where we assume that {z,,} have been estimated from
the received signals using the ML method. By multiplying
the estimates by c, we obtain the bistatic range measure-
ments, denoted by {rn,,}, which are modeled as

Fmn =R, +R +€mpn, m=1,2,..,.M, n=1,2,..,N  (6)

where
R, = IIX5, —XII2 (7
Ry, = IIX, —XI|2. ®)

Here, Rﬁn and R;, are the unknown ranges between the
target and the mth transmitter and the nth receiver,
respectively, while €, is the zero-mean Gaussian distrib-
uted range estimation error, whose power is inversely
proportional to |ay,|2. For presentation simplicity, we
assume that || = |a| for all m and n. In the coherent
case, the covariance matrix of ep,, denoted by Ce, is [9]

2 2
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While for non-coherent processing, the corresponding
covariance matrix is given by [9]

o,

“Tsmaprir "
In both cases, C is a scaled identity matrix, indicating that
€mn is zero-mean white Gaussian process and we denote its
variance as o2. It is worth noting that our algorithm devel-
opment and analysis can be straightforwardly extended to
the case when each €,,, has distinct power, that is, C. is a
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