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a b s t r a c t

Affine projection sign algorithm (APSA) is a useful adaptive filter for a highly correlated
input signal in the presence of impulsive noise. In this study, a novel variable step-size
APSA is proposed using selective input vectors to achieve both fast convergence rate and
low steady-state mean-square deviation (MSD) with low computational cost. The selective
input vectors and step size are chosen so as to maximize the theoretical MSD difference
derived using Price's theorem. The simulation results show that the proposed algorithm
has the fastest convergence rate and lowest steady-state MSD when compared with
recent variable step-size APSAs. Moreover, it effectively reduces computational cost.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerous adaptive filtering algorithms with different
advantages and disadvantages depending on the design
purpose and system environment have been proposed [1].
Among them, the least mean-square (LMS) algorithm and
its normalized version are preferred because of their
structural simplicity and low computational cost. However,
in specific case such as double-talk situation when the
input signal is highly correlated and impulsive noise is
present, LMS algorithm exhibits degraded performance.

Affine projection algorithm (APA), which uses multiple
input vectors to update the weight vector, was introduced to
improve the filter performancewhen the input signal is highly
correlated [2]. Additionally, sign algorithm (SA) which was
derived from L1�norm minimization of error, was employed

to design filters robust to impulsive noise [3]. Subsequently,
the affine projection sign algorithm (APSA) was introduced for
both highly correlated input signal and impulsive noise
conditions [4]. As with other AP-type filters, in APSA, the
use of multiple input vectors results in fast convergence rate
at a high computational cost and memory requirement.

To overcome this, numerous AP-based algorithms includ-
ing pseudo-type algorithms [5,6], fast-type algorithms [7,8]
and selective input vector algorithms [9,11,10] were intro-
duced. Although the pseudo-type and the fast-type algorithms
effectively decreased the computational cost through numer-
ical methods, these algorithms are not directly related to the
filter's performance such as the convergence rate and the
steady-state error. In contrast, the proper choice of input
vectors has a relatively weak effect on reducing computational
cost, but can improve the filter's performance [9–11]. In APA,
there have been active studies about input vector selection
algorithms derived from theoretical mean-square error (MSE)
or deviation (MSD). However, such APSAs have not yet been
introduced, and therefore it is important to derive a new
criterion for APSA to give physical meaning for input vectors.
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In addition, step size, which is a scaler for adaptation
term, significantly influences convergence rate and steady-
state MSD. To achieve both fast convergence rate and low
steady-state MSD, many variable step-size APSAs have
been introduced recently [12–14]. These algorithms derive
the theoretical MSD under the assumption of noise in the
transient state [12], by estimating the noise expectation
[13] or using a noise bound [14]. However, the physical
meaning for specific input vectors is hard to be derived
from the MSDs in [12–14], because those MSDs are based
on the expectation of L1�norm of the output error vector.

In this study, we propose a novel variable step-size
APSA with selective input vectors. To derive the input
selection strategy and the variable step-size scheme, we
calculate the theoretical MSD using Price's theorem [15].
The filter employs only selective input vectors which
contribute to increase the theoretical MSD difference,
and the difference is reconstructed with the selected
vectors. In addition, the optimal step size is obtained to
maximize the reconstructed MSD difference. The simula-
tion results show that the proposed algorithm has the
fastest convergence rate and lowest steady-state error
when compared with other variable step-size algorithms
[13,14] for various initial projection orders, and the com-
putational cost is effectively decreased.

2. Theoretical MSD in APSA

The APSA uses L1�norm minimization criterion of
error to estimate the system weight vector (wo) [4]. To
estimate wo, the filter weight vector (wiþ1) is updated
using the current weight vector (wi), the input matrix
Ui ¼ ui ui�1 …ui�Kþ1

� �
composed of the input vector

ui ¼ ½uðiÞuði�1Þ…uði�Mþ1Þ�T , and the error vector
defined by ei ¼ di�yi ¼ e1ðiÞ e2ðiÞ …eK ðiÞ½ �T where di and
yi are the system output measurement and the filter
output at the ith iteration, respectively. Further, M is the
tap length of the adaptive filter and the projection order
(K) denotes the number of input vectors used (KrM, [1]).
The ordinary weight vector update equation for the APSA
of [4] is

wiþ1 ¼wiþμ
Ui sgnðeiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgnðeTi ÞUT
i Ui sgnðeiÞ

q ; ð1Þ

where μ is the step size and sgnð�Þ denotes a vector
composed of the signs of the target vector. By subtracting
(1) from wo, we obtain the weight error vector
~w i ¼wo�wi as

~w iþ1 ¼ ~w i�μ
Ui sgnðeiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgnðeTi ÞUT
i Ui sgnðeiÞ

q : ð2Þ

To obtain the MSD equation, we first take the expectation
on the squared norm of (2) as

E ~wT
iþ1 ~w iþ1

h i
¼ E ~wT

i ~w i

h i
�Δi; ð3Þ

where the difference Δi is given by

Δi ¼ 2μE
~wT
i Ui sgnðeiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgnðeTi ÞUT
i Ui sgnðeiÞ

q
2
64

3
75�μ2:

To go further, the numerator and the denominator of Δi

can be approximately divided as

Δi � 2μ
E ~wT

i Ui sgnðeiÞ
h i

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðeTi ÞUT

i Ui sgnðeiÞ
q� ��μ2: ð4Þ

This separation of the expectation operator is reasonable
when the tap length is sufficiently long [16], because the
denominator of (4) is slow varying with the long tap. In
addition, we apply an approximation as follows:

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðeTi ÞUT

i Ui sgnðeiÞ
q� �

¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi

j ¼ i�Kþ1

Juj J2þ
X
ma n

i� K þ 1rm;nr i

sign em ið Þð Þ sign en ið Þð ÞuT
mun

vuuut
2
64

3
75

� E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi

j ¼ i�Kþ1

Juj J2
vuut

2
4

3
5: ð5Þ

Here, we assume that
Pi

j ¼ i�Kþ1 Juj J2 is dominant on (5),
and this assumption is reasonable especially in steady-
state, because ej(i) is a zero-mean Gaussian random vari-
able conditioned on wi [16,17]. As in [16], we use the
assumption even when transient-state for mathematical
tractability. Therefore,

Δi � 2μ
E ~wT

i UisgnðeiÞ
h i

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi

j ¼ i�Kþ1 Juj J2
q� ��μ2:

The numerator is now rearranged as the summation of
scalar random variables to apply Price's theorem [15] such
as

~wT
i Ui sgnðeiÞ ¼ eTa;i sgnðeiÞ ¼

XK
j ¼ 1

ea;jðiÞ signðejðiÞÞ; ð6Þ

where ea;i ¼UT
i ~w i ¼ ½ea;1ðiÞea;2ðiÞ…ea;K ðiÞ�T is the noise-free

error vector at the ith iteration. By substituting (6) into Δi,
Δi becomes

Δi ¼ 2μ
PK

j ¼ 1 E ea;jðiÞ signðejðiÞÞ
� �

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi

j ¼ i�Kþ1 Juj J2
q� � �μ2: ð7Þ

The numerator in (7) is obtained from the following
Lemma.

Lemma. When random variables x and y are scalar zero-
mean jointly Gaussian, the following statement holds.

E x sign yð Þ½ � ¼ E½xy�
σ2
y
E y sign yð Þ½ �

Proof. The proof could be driven by defining the input–
output mapping function in Price's theorem [15] and its
extension [1] as f ðx; yÞ ¼ x signðyÞ. That is,
∂E½x signðyÞ�

∂ρ
¼ E

d signðyÞ
dy

� �
and E y sign yð Þ½ � ¼ σ2

yE
d signðyÞ

dy

� �
;

ð8Þ
where ρ¼ E½xy�, and the second equation in (8) was
derived from the integration by parts. By integrating the
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