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a b s t r a c t

In this note we first characterize the periodic trajectories (or, equivalently, the limit cycles) of a Boolean
network, and their global attractiveness. We then investigate under which conditions all the trajectories
of a Boolean control networkmay be forced to converge to the same periodic trajectory. If every trajectory
can be driven to such a periodic trajectory, this is possible by means of a feedback control law.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean networks (BNs) are state-space models whose state
variables attain two possible values (0 and 1, true or false) and
whose update is governed by logic functions. The recent interest in
BNs is motivated by the large number of natural and artificial sys-
tems whose describing variables display only two distinct config-
urations. Originally introduced to model simple neural networks,
BNs recently proved to be suitable to describe and simulate the be-
havior of genetic regulatory networks (Kauffman, 1969; Shmule-
vich, Dougherty, Kim, & Zhang, 2002). In addition, BNs are fruitfully
used to describe the interactions among agents and hence to in-
vestigate consensus problems (Green, Leishman, & Sadedin, 2007;
Lou & Hong, 2010). Boolean control networks (BCNs) were subse-
quently introduced in the literature to keep into account thatmany
biological systems have exogenous inputs. So, by adding Boolean
inputs to a BN, it is possible to formally define a BCN. Indeed, a BCN
can be seen as a switched system, switching among different BNs.

In addition to the increasingly large number of applications
where BNs and BCNs proved their effectiveness, another reason
for their recent success is the powerful algebraic framework,
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developed by D. Cheng and co-authors (Cheng, 2009; Cheng & Qi,
2010; Cheng, Qi, & Li, 2011), where both BNs and BCNs can be
recast. The main idea underlying this approach is that a Boolean
network with n state variables exhibits 2n possible configurations,
and if any such configuration is represented by means of a
canonical vector of size 2n, all the logic maps that regulate the
state-updating can be equivalently described by means of 2n

×

2n Boolean matrices. As a result, every Boolean network can be
described as a discrete-time linear system. In a similar fashion,
a Boolean control network can be converted into a discrete-time
bilinear system or, more conveniently, it can be seen as a family
of BNs, each of them associated with a specific value of the input
variables.

In this paper, we investigate the periodic structure of the state
trajectories of BNs and BCNs. In detail, we first characterize the
periodic trajectories (or, equivalently, the limit cycles) of a Boolean
network, and their global attractiveness. We then investigate
under which conditions all the trajectories of a BCN may be
forced to converge to the same periodic trajectory. If this is the
case, this goal can be achieved by means of a feedback control.
The stabilization problem to an equilibrium point, a topic first
investigated by Cheng, Qi, and Li (2010); Cheng, Qi, Li, and Liu
(2011) (see also Li and Sun (2012) and Li, Wang, and Liu (2011)
for recent contributions about the stability and stabilizability
problems for BCNs and BNs with impulsive effects), follows as a
special case.

Notation. Given two nonnegative integers k, n, with k ≤ n, by
the symbol [k, n] we denote the set of integers {k, k + 1, . . . , n}.
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We consider Boolean vectors and matrices, taking values in
B = {0, 1}, with the usual logical operations (And ∧, Or ∨,
Negation −). δi

k denotes the ith canonical vector of size k,Lk the set
of all k-dimensional canonical vectors, and Lk×n ⊂ Bk×n the set of
all k × n matrices whose columns are canonical vectors of size k.
Any matrix L ∈ Lk×n can be represented as a vector whose entries
are canonical vectors in Lk, namely L =


δ
i1
k δ

i2
k · · · δ

in
k


, for

suitable indices i1, i2, . . . , in ∈ [1, k]. [A]ℓj is the (ℓ, j)th entry of
thematrix A. A permutationmatrix P is a nonsingular squarematrix
in Lk×k. In particular, a matrix

P = C =

δ2
k δ3

k · · · δk
k δ1

k


(1)

is a k × k cyclic (permutation) matrix. Given a matrix L ∈ Bk×k

(in particular, L ∈ Lk×k), we associate with it (Brualdi & Ryser,
1991) a digraph D(L), with vertices 1, . . . , k. There is an arc (j, ℓ)
from j to ℓ if and only if the [L]ℓj = 1. A sequence j1 → j2 →

· · · → jr → jr+1 in D(L) is a path of length r from j1 to jr+1
provided that (j1, j2), . . . , (jr , jr+1) are arcs of D(L). A closed path
is called a cycle. In particular, a cycle γ with no repeated vertices
is called elementary, and its length |γ | coincides with the number
of (distinct) vertices appearing in it. Note that a k× k cyclic matrix
has a digraph that consists of one elementary cycle with length k.

There is a bijective correspondence between Boolean variables
X ∈ B and vectors x ∈ L2, defined by the relationship

x =


X
X


.

We introduce the (left) semi-tensor product n between matrices
(and hence, in particular, vectors) as follows (Cheng, Qi, Li, 2011;
Laschov & Margaliot, 2012): given L1 ∈ Rr1×c1 and L2 ∈ Rr2×c2 (in
particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2 ), we set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2}.

The semi-tensor product represents an extension of the standard
matrix product, by thismeaning that if c1 = r2, then L1nL2 = L1L2.
Note that if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 . By
resorting to the semi-tensor product, we can extend the previous
correspondence to a bijective correspondence (Cheng, Qi, Li, 2011)
between Bn and L2n . This is possible in the following way: given
X =


X1 X2 · · · Xn

⊤
∈ Bn set

x :=


X1

X1


n


X2

X2


n · · · n


Xn

Xn


.

This amounts to saying that

x =


X1X2 · · · Xn−1Xn

X1X2 · · · Xn−1 Xn

X1X2 · · · Xn−1Xn
...

X1X2 · · · Xn−1Xn

 .

2. Limit cycles of a Boolean Network

A Boolean Network (BN) is described by the following equation

X(t + 1) = f (X(t)), t ∈ Z+, (2)

where X(t) denotes the n-dimensional state variable at time t ,
taking values in Bn. f is a (logic) function, namely a map f :

Bn
→ Bn. Upon representing the state vector X(t) by means of

its equivalent x(t) in L2n , the BN (2) can be described (Cheng, Qi,
Li, 2011) as

x(t + 1) = L n x(t) = Lx(t), (3)

where L ∈ L2n×2n is a matrix whose columns are canonical vectors
of size 2n.

Definition 1. An ordered sequence of distinct vectors (δ
i1
2n , δ

i2
2n ,

. . . , δ
ik
2n) is a limit cycle C of the BN (3) if x(0) = δ

iℓ
2n for some

ℓ ∈ [1, k] ensures that the corresponding state trajectory x(t) is
periodic of period k and, for every t ∈ Z+, x(t) = δ

ij
2n , where

j ∈ [1, k] and j ≡ (t + ℓ) mod k. A limit cycle of unitary length is
an equilibrium point of the BN.

Definition 2. A limit cycle C of the BN (3) is globally attractive if for
every x(0) ∈ L2n there exists τ ∈ Z+ such that x(t) is a state of C
for every t ∈ Z+, t ≥ τ .

Clearly, a BN has a globally attractive limit cycle if and only if
all its state trajectories converge in a finite number of steps to the
same periodic trajectory. In order to provide a characterization of
globally attractive limit cycles, we introduce the following result.

Proposition 1 (Fornasini & Valcher, in press). Given a BN (3), there
exist r ∈ N and a permutation matrix P ∈ L2n×2n such that

P⊤LP = blockdiag{D1,D2, . . . ,Dr}, (4)

with Di =


Ni 0
Ti Ci


∈ Lni×ni , (5)

where Ni is a (ni − ki) × (ni − ki) square nilpotent matrix, and Ci is a
ki × ki cyclic permutation matrix.

The permutation matrix P corresponds to a so called change
of basis in the vector space of the logic functions of x1, x2, . . . , xn
(Cheng, Qi, Li, 2011). The previous proposition relates a number
of properties of the BN to the algebraic structure of L: in the
general case, a BN has r limit cycles. Every limit cycle (in particular,
every equilibrium point) has a domain of attraction, namely a set of
initial conditions x(0) that originate trajectories entering the cycle
in a finite number of steps. The block structure of P⊤LP clarifies
the domain of attraction of each limit cycle. Finally, the number
τr := maxi∈[1,r](ni−ki) represents an upper bound on the transient
time, namely on the maximum number of steps after which x(t)
steadily belongs to a limit cycle. Note that after τr steps, every
trajectory is periodic with (not necessarily minimum) period τp :=

l.c.m.{ki, i ∈ [1, r]}.
The previous comments immediately lead to the following

characterization.

Proposition 2. Given a BN (3), an ordered set of distinct canonical
vectors C = (δ

i1
2n , δ

i2
2n , . . . , δ

ik
2n) is a globally attractive limit cycle of

the BN if and only if there exists a permutationmatrix P ∈ L2n×2n such
that P⊤LP can be described as in (4)–(5) for r = 1, with C1 a cyclic
permutationmatrix of size k and, possibly upon a circular permutation
of the indices iℓ, P⊤δ

iℓ
2n = δ2n−k+ℓ

2n , for every ℓ ∈ [1, k].

By Proposition 1, the characteristic polynomial of the matrix L
takes the form

∆L(z) := det(zI2n − L) =

z
2n−

r
i=1

ki

 r
i=1

(zki − 1).

Consequently, we have the following corollary.

Corollary 1. A BN (3) has a globally attractive limit cycle (of length
k) if and only if ∆L(z) = z2

n
−k(zk − 1).
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