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a b s t r a c t

Signals, recorded over time, are often observed as mixtures of multiple source signals. To
extract relevant information from such measurements one needs to determine the mixing
coefficients. In case of weakly stationary time series with uncorrelated source signals, this
separation can be achieved by jointly diagonalizing sample autocovariances at different
lags, and several algorithms address this task. Often the mixing estimates contain close-
to-zero entries and one wants to decide whether the corresponding source signals have a
relevant impact on the observations or not. To address this question of model selection we
consider the recently published second-order blind identification procedures SOBIdef

and SOBIsym which provide limiting distributions of the mixing estimates. For the first
time, such distributions enable informed decisions about the presence of second-order
stationary source signals in the data. We consider a family of linear hypothesis tests and
information criteria to perform model selection as second step after parameter estimation.
In simulations we consider different time series models. We validate the model selection
performance and demonstrate a good recovery of the true zero pattern of the mixing
matrix.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Time resolved signals appear in a large variety of con-
texts, and often one observes a multivariate mixture of
different signals rather than separated ones. In blind sou-
rce separation (BSS) we assume a linear and instantaneous
mixing model and aim to estimate the underlying source
signals together with the mixing weights. In case of

weakly stationary time series with uncorrelated source
signals, a mixing matrix can be estimated based on the
second-order statistics of the observations. The problem
then reduces to jointly diagonalizing sample autocovar-
iances at different lags. Many existing BSS algorithms are
based on this idea [1–5]. A review on joint diagonalization
algorithms is given in [6]. Applications range from audio
recordings to biomedical signal or image data. For the
latter the assumption of uncorrelated source components
can be extended to the spatial dimension of the data [7,8].
In an application to high dimensional functional magnetic
resonance imaging (fMRI), for example, patients alter-
nately passed through periods of rest and photic stimulus.
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In comparison to other BSS methods, joint diagonalization
could identify a signal with high coherence to the stimulus
[8]. Another widely used measuring technique is electro-
encephalography (EEG). Here, the brain's electrical activity
is recorded and joint diagonalization could successfully
separate artifacts like eye movement or blinking from the
data [9]. If the EEG signals arise from correlated stimula-
tion of the left and right somatosensory cortices a large
number and wide range of time delays is preferable [10].

To draw further conclusions from source separation,
one often wants to know whether single source signals
are present in a specific observation. More precisely, one
wants to decide whether close-to-zero entries of the
mixing estimate are actually zero or not. This is commonly
done by thresholding which lacks statistical motivation. To
provide informative decisions we develop suitable model
selection criteria. To that end, we consider the recently pub-
lished second-order blind identification versions SOBIdef

[11] and SOBIsym [12]. For both algorithms the authors
showed that the (un-)mixing estimates are asymptotically
normally distributed under mild conditions, and they derived
limiting variances of the estimates when the time series
length goes to infinity. Based on these distributions we create
a framework to perform model selection on the mixing esti-
mates. Here, we use a family of linear hypothesis tests and
different information criterions including the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion
(BIC). To speed up the selection process we also consider an
alternative information criterion that does not require the
maximum likelihood parameter estimates.

In the first part, we state the second-order source
separation problem (Section 2) and shortly review the
algorithms SOBIdef and SOBIsym (Section 3). Their
practical estimation performance has not been evaluated
yet. To figure it out, we compare both algorithms to the
established methods SOBI [2] and the non-orthogonal
ACDC [4]. We find that SOBIsym achieves the same
estimation results as SOBI but with the gain of knowing
the limiting distribution of the (un-)mixing estimates
(Section 4). In the main part, we then demonstrate how
the additional information about the distribution can be
used to choose between different candidates for the
mixing matrix (Section 5). In simulations we consider a
BSS model where the mixing matrix contains zero and
close-to-zero entries (Section 6). For both algorithms
SOBIdef and SOBIsym the testing performance could be
validated and we show the percentages of correctly
reconstructed zero-patterns among different time series
models and for the different selection approaches.

Throughout the paper we use bold symbols to denote
random variables and solid symbols to denote parameters
and realizations of random variables.

2. A second-order blind source separation model

Let fxðtÞgtAZ be a p-variate observable time series that
is weakly stationary. This means that the mean and the
autocovariance at any lag τAN do not change with respect
to time. After mean-removal we assume a zero-centered
process that is generated by the following linear mixing

model:

xðtÞ ¼ΩzðtÞ; tAZ: ð1Þ
Here, Ω denotes a deterministic full rank p�p mixing
matrix and fzðtÞgtAZ is a p-variate unobservable time series
that is weakly stationary as well and has uncorrelated
components. More precisely, we assume

(A1) EðzðtÞÞ ¼ 0,
(A2) CovðzðtÞ; zðtÞÞ ¼ Ip,
(A3) CovðzðtÞ; zðtþτÞÞ ¼ CovðzðtþτÞ; zðtÞÞ ¼Λτ is diagonal

for all lags τAN, and
(A4) for all ia jAf1;…; pg there exists a lag τAN such that

λτiaλτj with λτi and λτj being the ith and jth diagonal
entries of Λτ , respectively.

With the scaling to unit variance in (A2) and the assump-
tion (A4) the mixing becomes unique up to a sign-
changing permutation: if xðtÞ ¼Ω1z1ðtÞ ¼Ω2z2ðtÞ, then
Ω2 ¼Ω1B and z2ðtÞ ¼ B�1z1ðtÞ, where B contains exactly
one non-zero entry per row and column and these entries
equal 71. This restriction on B follows from the spectral
theorem [13].

In second-order source separation we consider the
second-order statistics of the observable process, and with
these we estimate the mixing matrix Ω as well as the
unobservable process fzðtÞgtAZ. The autocovariance of
fxðtÞgtAZ at lag τAN is of the form:

CovðxðtÞ; xðtþτÞÞ ¼ΩΛτΩ
0;

where Λ0 ¼ Ip at lag zero. Let now xð1Þ;…; xðTÞ be observa-
tions at subsequent time points. The sample autocovar-
iance at lag τ is then given as

Sτ ¼
1

T�τ

XT�τ

t ¼ 1

x tð Þx tþτð Þ0:

To determine an unmixing estimate we jointly diag-
onalize sample autocovariances at distinct lags τ1;…; τK .
We assume that fτ1;…; τKgDN is such that (A4) also holds
for fτ1;…; τKg instead of N. For better readability, we
denote the corresponding autocovariances as S1;…; SK
even if the lags are different from 1;…;K . An unmixing
estimate is then a p� p matrix Γ ¼ ðγ1;…; γpÞ0 that mini-
mizes the off-diagonal elements of ΓSkΓ

0 for all k¼1,…,K
in the sense that

f nðΓÞ ¼
XK
k ¼ 1

JoffðΓSkΓ0ÞJ2F

is minimized under the constraint ΓS0Γ
0 ¼ Ip. Here,

offðMÞ ¼M�diagðMÞ with diagðMÞ being a diagonal matrix
consisting of the diagonal entries of M, and J : JF denotes
the Frobenius norm of a matrix. The above minimization is
equivalent to the maximization of

f ðΓÞ ¼
XK
k ¼ 1

JdiagðΓSkΓ0ÞJ2F ¼
Xp
j ¼ 1

XK
k ¼ 1

ðγj 0SkγjÞ2 ð2Þ

under the same constraint. From the spectral theorem it
follows that an optimal solution Γ is indeed an estimate of
the unmixing matrix.
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