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a b s t r a c t

Simplicial Dirac structures as finite analogues of the canonical Stokes–Dirac structure, capturing the
topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains
related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for
the formulation of standard input–output finite-dimensional port-Hamiltonian systems that emulate
the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix
representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial
manifolds. Employing these representations, we consider the existence of structural invariants and
demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial
manifolds.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Awide class of field theories can be treated as port-Hamiltonian
systems (Schöberl & Schlacher, 2011; van der Schaft & Maschke,
2002). The Stokes–Dirac structure defined by van der Schaft and
Maschke (2002) is an infinite-dimensional Dirac structure which
provides a theoretical account that permits the inclusion of vary-
ing boundary variables in the boundary problem for partial differ-
ential equations. From an interconnection and control viewpoint,
such a treatment of boundary conditions is essential for the incor-
poration of energy exchange through the boundary, since in many
applications the interconnectionwith the environment takes place
precisely through the boundary. For numerical integration, sim-
ulation and control synthesis, it is of paramount interest to have
finite-dimensional approximations that can be interconnected to
one another.
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Most of the numerical techniques emanating from the field
of numerical analysis, however, fail to capture the intrinsic sys-
tem structures and properties, such as symplecticity, conservation
of momenta and energy, as well as differential gauge symmetry.
Mixed finite element methods can be constructed in a such a man-
ner that a number of important structural properties are preserved
(Bossavit, 1998; Hiptmair, 2002; Hirani, 2003). Most of the efforts
have been focused on systems on manifolds without boundary or
zero energy flow through the boundary. In Golo, Talasila, van der
Schaft, and Maschke (2004) a mixed finite element scheme for
structure-preserving discretization of port-Hamiltonian systems
was proposed. The construction is clear in a one-dimensional spa-
tial domain, but becomes complicated for higher spatial domains.
Furthermore, the geometric content of the discretized variables re-
mains moot, in sense that, for instance, the boundary variables do
not genuinely live on the geometric boundary.

Recently in Seslija, van der Schaft, and Scherpen (2012), we
suggested a discrete exterior geometry approach to structure-
preserving discretization of distributed-parameter port-Hamilto-
nian systems. The spatial domain in the continuous theory
represented by a finite-dimensional smooth manifold is replaced
by a homological manifold-like simplicial complex and its cir-
cumcentric dual. The smooth differential forms, in discrete set-
ting, are mirrored by cochains on the primal and dual complexes,
while the discrete exterior derivative is defined to be the cobound-
ary operator. Discrete analogues of the Stokes–Dirac structure are
the so-called simplicial Dirac structures defined on spaces of pri-
mal and dual discrete differential forms. These finite-dimensional
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Dirac structures offer a natural framework for the formulation of
finite-dimensional port-Hamiltonian systems that emulate their
infinite-dimensional counterparts. The resulting port-Hamiltonian
systems are in the standard input–output form, unlike in Golo et al.
(2004), where the discretized models are acausal (given by a set
of differential and algebraic equations). The explicit input–output
form obtained by our scheme has the advantage from both numer-
ical and control perspective over the implicit model presented in
Golo et al. (2004).

In this paper, we address the issue of matrix representations
of simplicial Dirac structures by representing cochains by their
coefficient vectors. In this manner, all linear operator from the
continuous world can be represented by matrices, including the
Hodge star, the coboundary and the trace operator. Firstly, we
recall the definition of the Stokes–Dirac structure and port-
Hamiltonian systems. In the third section,wedefine some essential
concepts from discrete exterior calculus as developed by Desbrun,
Hirani, Leok, and Marsden (2002) and Hirani (2003). In order to
allow the inclusion of nonzero boundary conditions on the dual
cell complex, in Seslija et al. (2012) we have adapted a definition
of the dual boundary operator that leads to a discrete analogue
of the integration-by-parts formula, which is a crucial ingredient
in establishing simplicial Dirac structures on a primal simplicial
complex and its circumcentric dual. We demonstrate how these
simplicial Dirac structures relate to the spatially discretized wave
equation on a bounded domain and to the telegraph equations on a
segment. Towards the end of the paper, we consider the existence
of structural invariants, which are crucial for the control by energy
shaping.
Goal and contributions. This paper is written with several purposes
in mind.

• The essential theoretical results of this paper pertaining to
structure-preserving discretization, namely, Sections 3–5 have
been already reported in Seslija, Scherpen, and van der Schaft
(2011, 2012); Seslija et al. (2012) in an algebraic topology set-
ting. The results in this paper donot lean onto the heavynomen-
clature of algebraic topology, but instead emphasize matrix
representations, making it more accessible and easier to im-
plement. We demonstrate that a discrete differential modeling
approach to consistent discretization of distributed-parameter
systems is quite approachable—and, in fact, is often much sim-
pler than its continuous counterpart.
• We aim to render the theoretic foundation of our exposition ac-

cessible to control theorists, and the paper as such serves as a
segue to the rich literature on the subject.
• Another contribution of this paper is given in Sections 7 and

8. Here we address the existence of dynamical invariants for
the obtained spatially discrete systems and look at the energy-
Casimir method for energy shaping. We anticipate that this
line of research will lead to more elaborate and fruitful control
strategies for distributed systems.
• We hope that by the end of the paper it will become clear that

the discrete geometry-based approach to modeling is not only
tied to the discretization of infinite-dimensional systems, but,
instead, stands as a potent language for the system and control
community.

2. Background of port-Hamiltonian systems

Dirac structures were originally developed by Courant (1990)
andDorfman (1993) as a generalization of symplectic, presymplec-
tic and Poisson structures. Later, Dirac structures were employed
as the geometric formalism underpinning generalized intercon-
nected and constrained Hamiltonian systems (van der Schaft,
2000; van der Schaft & Maschke, 2002).

2.1. Dirac structures

LetX be amanifold and define a pairing on TX⊕T ∗X given by

⟨⟨(f1, e1), (f2, e2)⟩⟩ = ⟨e1|f2⟩ + ⟨e2|f1⟩.

For a subspace D of TX⊕ T ∗X, we define the orthogonal comple-
ment D⊥ as the space of all (f1, e1) such that ⟨⟨(f1, e1), (f2, e2)⟩⟩ =
0 for all (f2, e2). A Dirac structure is then a subbundle D of TX ⊕
T ∗X which satisfies D = D⊥.

The notion of Dirac structures is suitable for the formulation of
closed Hamiltonian systems, however, our aim is a treatment of
open Hamiltonian systems in such a way that some of the external
variables remain free port variables. For that reason, let Fb be a
linear vector space of external flows, with the dual space F ∗b of
external efforts. We deal with Dirac structures on the product
space X × Fb. The pairing on (TX × Fb) ⊕ (T ∗X × F ∗b ) is given
by

(f1, fb,1), (e1, eb,1)

,

(f2, fb,2), (e2, eb,2)


= ⟨e1|f2⟩ + ⟨eb,1|fb,2⟩ + ⟨e2|f1⟩ + ⟨eb,2|fb,1⟩. (1)

A generalized Dirac structure D is a subbundle of (TX × Fb) ⊕
(T ∗X× F ∗b ) which is maximally isotropic under (1).

Consider a generalized Dirac structure D on the product space
X × Fb. Let H : X → R be a Hamiltonian. The port-Hamiltonian
system corresponding to a 4-tuple (X, Fb, D,H) is defined by a
set of smooth time-functions {t → (x(t), fb(t), eb(t)) ∈ X×Fb×

F ∗b |t ∈ I ⊂ R} satisfying the equation

(−ẋ(t), fb(t), dH(x(t)), eb(t)) ∈ D for t ∈ I. (2)

The Eq. (2) implies the energy balance dH
dt (x(t)) = ⟨dH(x(t))|ẋ(t)⟩

= ⟨eb(t)|fb(t)⟩.
An important class of finite-dimensional port-Hamiltonian

systems is given by

ẋ = J(x)
∂H
∂x

(x)+ g(x)eb

fb = gt(x)
∂H
∂x

, (3)

where for clarity we have omitted the argument t , and J : T ∗X→
TX is a skew-symmetric vector bundle map and g : Fb → TX is
the independent input vector field.

In this work, we deal exclusively with Dirac structures on linear
spaces, which can be defined as follows. Let F and E be linear
spaces. Given an f ∈ F and an e ∈ E , the pairing will be denoted
by ⟨e|f ⟩ ∈ R. By symmetrizing the pairing, we obtain a symmetric
bilinear form ⟨⟨, ⟩⟩ : F × E → R naturally given as ⟨⟨(f1, e1),
(f2, e2)⟩⟩ = ⟨e1|f2⟩ + ⟨e2|f1⟩.

A constant Dirac structure is a linear subspace D ⊂ F × E such
that D = D⊥, with ⊥ standing for the orthogonal complement
with respect to the bilinear form ⟨⟨, ⟩⟩.

2.2. Stokes–Dirac structure

The Stokes–Dirac structure is an infinite-dimensional Dirac
structure that provides a foundation for the port-Hamiltonian for-
mulation of a class of distributed-parameter systems with bound-
ary energy flow (van der Schaft & Maschke, 2002).

Hereafter, letM be an oriented n-dimensional smoothmanifold
with a smooth (n − 1)-dimensional boundary ∂M endowed with
the induced orientation, representing the space of spatial variables.
Adhering to the familiar ground in this paper,M shall be a bounded
Euclidean domain. By Ωk(M), k = 0, 1, . . . , n, denote the space of
exterior k-forms on M , and by Ωk(∂M), k = 0, 1, . . . , n − 1, the
space of k-forms on ∂M .
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