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We consider the optimal servicing of a queue with sigmoid server performance. There are various systems
with sigmoid server performance, including systems involving human decision making, visual perception,
human-machine communication and advertising response. Tasks arrive at the server according to a Pois-
son process. Each task has a deadline that is incorporated as a latency penalty. We investigate the trade-
off between the reward obtained by processing the current task and the penalty incurred due to the tasks

waiting in the queue. We study this optimization problem in a Markov decision process (MDP) framework.
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We characterize the properties of the optimal policy for the MDP and show that the optimal policy may
drop some tasks; that is, may not process a task at all. We determine an approximate solution to the MDP
using the certainty-equivalent receding horizon optimization framework and derive performance bounds
on the proposed receding horizon policy. We also suggest guidelines for the design of such queues.
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1. Introduction

The recent national robotic initiative (Guizzo, 2011) motivates
research and applications emphasizing the interaction of humans
with symbiotic co-robot partners. Such co-robots will facilitate
better interaction between the human partner and the automaton.
In complex and information rich environments, one of the key roles
for these co-robots is to help the human partner focus their atten-
tion efficiently. A particular example of such a setting is a surveil-
lance mission in which the human operator monitors the evidence
collected by the autonomous agents (Bulkeley, 2009; Drew, 2010).
The excessive amount of information available in such systems of-
ten results in poor decisions by the human operator (Shanker &
Richtel, 2011). This emphasizes the need for the development of a
support system that helps the human operator to focus their atten-
tion.

Recently, there has been a significant interest in understand-
ing the mechanisms of human decision making (Bogacz, Brown,
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Moehlis, Holmes, & Cohen, 2006). Several mathematical models for
human decision making have been proposed (Bogacz et al., 2006;
Pew, 1969; Wickens & Hollands, 2000). These models suggest that
the correctness of the decision of a human operator in a binary de-
cision making scenario evolves as a sigmoid function of the time
allocated for the decision. When a human operator has to serve a
queue of decision making tasks in real time, the tasks (e.g., feeds
from a camera network) waiting in the queue lose value contin-
uously. This trade-off between the correctness of the decision and
the loss in the value of the pending tasks is of critical importance for
the performance of the human operator. In this paper, we address
this trade-off, and determine the optimal duration allocation poli-
cies for the human operator serving such a decision making queue.
The sigmoid function has also been used to model the quality
of human-machine communication (Wickens & Hollands, 2000),
human performance in multiple target search (Hong & Drury,
2002), advertising response function (Vakratsas, Feinberg, Bass, &
Kalyanaram, 2004), and expected profit in simultaneous bidding
(Rothkopf, 1977). Therefore, the analysis presented in this paper
can also be used to determine optimal human-machine commu-
nication policies, optimal search strategies, the optimal advertise-
ment duration allocation, and optimal bidding strategies. In this
paper, we generically refer to the server with sigmoid performance
as a human operator and the tasks as the decision making tasks.
There has been a significant interest in the study of the per-
formance of a human operator serving a queue. In an early work,
Schmidt (1978) models the human as a server and numerically
studies a queueing model to determine the performance of a hu-
man air traffic controller. Recently, Savla, Temple, and Frazzoli
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(2008) study human supervisory control for unmanned aerial ve-
hicle operations: they model the system by a simple queueing net-
work with two components in series, the first of which is a spatial
queue with vehicles as servers and the second is a conventional
queue with human operators as servers. They design joint motion
coordination and operator scheduling policies that minimize the
expected time needed to classify a target after its appearance. The
performance of the human operator based on their utilization his-
tory has been incorporated to design maximally stabilizing task re-
lease policies for a human-in-the-loop queue in Savla and Frazzoli
(2010, 2012). Bertuccelli, Pellegrino, and Cummings (2010) study
the human supervisory control as a queue with re-look tasks. They
study the policies in which the operator can put the tasks in an
orbiting queue for a re-look later. An optimal scheduling problem
in the human supervisory control is studied in Bertuccelli, Beck-
ers, and Cummings (2010). Crandall, Cummings, Della Penna, and
de Jong (2011) study optimal scheduling policy for the operator
and discuss if the operator or the automaton should be ultimately
responsible for selecting the task. Powel and Morgansen (2012)
model mixed team of humans and robots as a multi-server queue
and incorporate a human fatigue model to determine the perfor-
mance of the team. They present a comparative study of the fixed
and the rolling work-shifts of the operators.

The optimal control of queueing systems (Sennott, 1999) is a
classical problem in queueing theory. There has been significant
interest in the dynamic control of queues; e.g., see Stidham and
Weber (1989) and references therein. In particular, Stidham and
Weber (1989) study the optimal servicing policies for an M/G/1
queue of identical tasks. They formulate a semi-Markov decision
process, and describe the qualitative features of the solution under
certain technical assumptions. In the context of M/M/1 queues,
Adusumilli and Hasenbein (2010) and George and Harrison (2001)
relax some of technical assumptions in Stidham and Weber (1989).
Hernandez-Lerma and Marcus (1983) determine optimal servic-
ing policies for queues with identical tasks and some unknown
mean arrival rate. They adapt the optimal policy as the mean ar-
rival rate is learned. In another related work, Zafer and Modiano
(2008) study static queues with monomial and exponential utili-
ties. They approximate the problem with a continuous time MDP.
In the case of the dynamic queue, they propose a heuristic that
solves the static problem at each stage.

In this paper, we study the problem of optimal duration alloca-
tion in a queue of binary decision making tasks with a human oper-
ator. We refer to such queues as decision making queues. In contrast
to the aforementioned works in queues with human operators, we
do not assume that the tasks require a fixed (potentially stochastic)
processing time. We consider that each task may be processed for
any amount of time, and the performance on the task is known as
a function of the processing time. Moreover, we assume that tasks
come with processing deadlines, and incorporate these deadlines
as a soft constraint, namely, latency penalty (penalty due to delay
in processing of a task). We consider two particular problems. First,
we consider a static queue with latency penalty. Here, the human
operator has to serve a given number of tasks. The operator incurs
a penalty due to the delay in processing of each task. This penalty
can be thought of as the loss in value of the task over time. Sec-
ond, we consider a dynamic queue of decision making tasks. Tasks
arrive according to a stochastic process and the operator incurs a
penalty for the delay in processing each task. In both the problems,
there is a trade-off between the reward obtained by processing a
task and the penalty incurred due to the resulting delay in process-
ing other tasks. We address this particular trade-off. The problem
considered in this paper is similar to the problem considered in
Adusumilli and Hasenbein (2010), George and Harrison (2001) and
Stidham and Weber (1989). The main differences between these
works and the problem considered in this paper are: (i) we con-
sider a deterministic service process, and this yields an optimal-
ity equation significantly different from the optimality equation

obtained for Markovian service process; (ii) we consider hetero-
geneous tasks, while the aforementioned works consider identical
tasks. These works either propose approximate solution strategies
customized to their setup, or rely on standard methods, e.g., the
value iteration method in the case of a finite action space. In our
problem, the heterogeneous nature of tasks significantly increases
the dimension of the state space and makes the computation of
optimal policies computationally intractable. We resolve this is-
sue by utilizing the certainty-equivalent receding horizon frame-
work (Bertsekas, 2005; Chang & Marcus, 2003; Mattingley, Wang,
& Boyd, 2011) to approximately compute the solution.

The major contributions of this work are fourfold. First, we de-
termine the optimal duration allocation policy for the static deci-
sion making queue with latency penalty. We show that the optimal
policy may not process every task in the queue and may drop a
few tasks, i.e., allocate zero duration to few tasks. Second, we pose
a Markov decision process (MDP) to determine the optimal allo-
cations for the dynamic decision making queue. We then establish
some properties of this MDP. In particular, we show that an optimal
policy exists and that it drops tasks if the queue length is greater
than a critical value. Third, we employ the certainty-equivalent re-
ceding horizon optimization to approximately solve this MDP. We
establish performance bounds on the certainty-equivalent reced-
ing horizon solution. Fourth and finally, we suggest guidelines for
the design of decision making queues. These guidelines suggest the
maximum mean arrival rate at which the operator expects a new
task to arrive soon after optimally processing the current task.

The remainder of the paper is organized as follows. We present
some preliminaries and the problem setup in Section 2. The static
queue with latency penalty is considered in Section 3. We pose
the optimization problem associated with the dynamic queue with
latency penalty and study its properties in Section 4. We present
and analyze a receding horizon algorithm for dynamic queue with
latency penalty in Section 5. Our conclusions are presented in
Section 6.

2. Preliminaries and problem setup

We consider the problem of attention allocation in queues with
decision making tasks. We assume that the decision making tasks
are independent of each other and arrive according to a Poisson
process with a given mean rate. A human operator processes these
tasks on a first-come first-serve (FCFS) basis (see Fig. 3.) The FCES
servicing discipline is a standard assumption in several queueing
systems with a human operator (Koole & Mandelbaum, 2002; Savla
& Frazzoli, 2010, 2012). The human operator receives a unit reward
for the correct decision, while there is no penalty for a wrong deci-
sion. We assume that the tasks can be parametrized by some vari-
able, which we will interpret here as the difficulty of the task, and
the variable takes a value in a finite set & C R. Let the perfor-
mance of the operator on a task with parameter d € £ be a func-
tion f : R>o — [0, 1) of the duration the operator allocates to
the task. A performance function relevant to the discussion in this
paper is the probability of making the correct decision. The evolu-
tion of the probability of a correct decision by a human operator
has been studied in cognitive psychology literature (Bogacz et al.,
2006; Pew, 1969). We now briefly review some human decision
making models:

Pew’s model: For a two alternative forced choice task, the proba-
bility of the correct decision D, given that hypothesis H;
is true and time t has been spent to make the decision is:

Po
1 4 e—(at=b)’
where pg € [0, 1], a, b € R are some parameters specific

to the human operator (Pew, 1969). The evolution
of P(D{|Hy, t) according to Pew’s model is shown in

Fig. 1(a).

P(D1[Hy, t) =
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