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a b s t r a c t

We investigate performance bounds for feedback control of distributed plantswhere the controller can be
centralized (i.e. it has access tomeasurements from thewhole plant), but sensors onlymeasure differences
between neighboring subsystem outputs. Such ‘‘distributed sensing’’ can be a technological necessity
in applications where system size exceeds accuracy requirements by many orders of magnitude. We
formulate how distributed sensing generally limits feedback performance robust to measurement noise
and to model uncertainty, without assuming any controller restrictions (among others, no ‘‘distributed
control’’ restriction). A major practical consequence is the necessity to cut down integral action on some
modes.We particularize the results to spatially invariant systems and finally illustrate implications of our
developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The massive availability of sensors and actuators in our en-
vironment is an opportunity to address large-scale problems by
exploiting their interaction. The control of interacting localized
subsystems (distributed plants) has drawn tremendous interest
in the last decades, covering e.g. agreement (consensus) in com-
puter networks (Tsitsiklis, 1993), synchronization of dynamical
systems (Nair & Leonard, 2008; Strogatz, 2003) or collective robotic
task solving (Bullo, Cortés, & Martínez, 2009). A defining prop-
erty is the information sharing between subsystems—information
content, and interconnection topology. Common distinctions are
reference-following (Lawton & Beard, 2002) vs. autonomous co-
ordination (Strogatz, 2003) and centralized vs. distributed control
(Bamieh, Jovanovic, Mitra, & Patterson, 2012; Bamieh, Paganini,
& Dahleh, 2002; de Castro & Paganini, 2002; Gorinevsky, Boyd,
& Stein, 2008; Langbort & D’Andrea, 2005; Stewart, Gorinevsky,
& Dumont, 2003). In centralized control, each local action is a
function of measurements all over the system. The distributed
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control paradigm (Bamieh et al., 2002; de Castro & Paganini, 2002;
Gorinevsky et al., 2008; Langbort & D’Andrea, 2005; Stewart et al.,
2003) imposes a localized coupling in closed-loop: each local ac-
tion depends on neighboring subsystem outputs only.

This paper shows how, ahead of the controller choice, structural
restrictions on the sensing architecture of a distributed plant can
fundamentally constrain the performance of feedback. Specifically,
we consider systems which only sense differences between
neighboring subsystem outputs. Unlike in distributed control, we
allow the resultingmeasurements to be used in any – in particular,
centralized – control computation. We call this ‘‘local relative
sensing’’ or ‘‘distributed sensing’’. It is motivated by applications
in which communication capabilities allow to quickly broadcast
all measurements and control signals – questioning a priori
restrictions on controller structure – but sensor technology does
not allow accurate enough absolute measurements over the
entire plant. This occurs in multi-scale problems, where accuracy
requirements and plant size differ by many orders of magnitude.
The setting is inspired by our study of primary mirror stabilization
for the European Extremely Large Telescope (EELT) (Bastin,
Sarlette, & Sepulchre, 2009). We therefore propose indicative
analytical results – for a general case and for 1-degree-of-freedom
spatially invariant systems– followedby an illustration on this case
study. We focus on two concerns. First, how distributed sensing
influences the sensor noise vs. disturbance rejection tradeoff,
using the sensitivity transfer functions of classical linear control
theory (Åstrøm, 2000; Åstrøm & Murray, 2008). Second, how

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.12.014

http://dx.doi.org/10.1016/j.automatica.2013.12.014
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.12.014&domain=pdf
mailto:alain.sarlette@ugent.be
mailto:r.sepulchre@eng.cam.ac.uk
http://dx.doi.org/10.1016/j.automatica.2013.12.014


422 A. Sarlette, R.J. Sepulchre / Automatica 50 (2014) 421–430

measurement model errors affect robustness. A major concrete
consequence is the necessity to cut down integral action on some
modes.

Effects of noise and perturbations in distributed systems are
examined in various ways in the literature. The authors of Bamieh
et al. (2012), Barooah, Mehta, and Hespanha (2009) and Hao,
Barooah, and Mehta (2011) restrict not only sensing, but also
control, to local relative coupling (this is distributed control). The
authors of Barooah and Hespanha (2007) study, in a static setting,
bounds on the reconstruction of absolute position with respect
to a leader from noisy local relative measurements. Optimal
controllers for spatially invariant plants are investigated in Bamieh
et al. (2002); for a locally coupled plant, the optimal gains decay
exponentially as a function of distance between actuated and
measured subsystems. This supports the use of distributed control,
for which Bamieh et al. (2012) investigate performance limitations
on a benchmark spatially invariant system. The robustness issue,
that we first raised in Bastin et al. (2009), has been observed
numerically with µ-analysis for the segmented mirror application
(MacMynowski, 2009). Segmented mirror stabilization has been
investigated by a few teams associated to Extremely Large
Telescope projects (Jiang, Voulgaris, Holloway, & Thompson, 2009;
MacMartin & Chanan, 2003; MacMynowski, 2009). In Jiang et al.
(2009) the distributed sensing issue is put aside by assuming
absolute measurements.

The paper is organized as follows. Section 2 formalizes dis-
tributed sensing and gives twomotivating examples: a benchmark
vehicle-chain problem and segmented mirror stabilization. Sec-
tion 3 formulates how sensor noise (3.1) and model errors (3.2)
induce performance limitations. Section 4 particularizes to 1-
degree-of-freedom spatially invariant systems. Section 5 illus-
trates our point on EELT primary mirror stabilization.

Notation. We write i =
√

−1 the imaginary unit. The element on
row j, column k of matrix C ∈ Cl×m is denoted as (C)j,k. CT and C∗

respectively denote transpose and complex conjugate transpose of
C , and⊗ the Kronecker product of twomatrices. We denote c ∈ Cl

a column vector, ∥c∥ =


k |ck|2 its Euclidean norm. Im ∈ Rm×m

is the identity matrix and 1m ∈ Rm the column-vector of all ones.
We interpret s+C = s Im+C if s ∈ C and C ∈ Cm×m. ForD ∈ Cm×m

diagonal and f a scalar function, Y = f (D) ∈ Cm×m is diagonalwith
(Y )k,k = f ((D)k,k) for all k.

2. Distributed sensing models

We consider a Laplace-domain model (see Fig. 1)

y(s) = G(s) [u(s) + d(s)] (1)
z(s) = [B + ∆] y(s) + n(s) (2)
u(s) = −C(s) z(s) (3)

to represent M ≫ 1 coupled N-dimensional subsystems. Com-
ponents kN + 1 to (k + 1)N of y(s), u(s), d(s) ∈ CNy denote
outputs, inputs and disturbances of subsystem k in the Laplace
domain, with Ny = NM . We assume that the plant governed by
G(s) is stable. Output z(s) ∈ CNz is obtained through the static
map [B + ∆] ∈ RNz×Ny , where B is the nominal sensor behavior
and∆ a sensormodel error. Each sensormeasurement is corrupted
by zero-mean independent identical Gaussian white noise, repre-
sented by n(s) with covariance matrix σ 2 INz . For ease of presenta-
tionweassumeNz ≥ Ny. The purpose of controllerC(s) ∈ CNy×Nz is
to reject disturbances d(s) from y. Importantly, we do not restrict
the controller (3) to be distributed, i.e. we allow C(s) to be a full
matrix. We also allow the disturbances on different subsystems to

Fig. 1. Schematic representation of distributed sensing.

be correlated, by investigating how a general vector d(s) affects the
controlled plant. This differs from e.g. Bamieh et al. (2012) and Hao
et al. (2011) which examine y for a given disturbance distribution
(and controller).

The central element of our investigation is local relative mea-
surement. Let qk = {kN + 1, kN + 2, . . . , (k + 1)N}.

Definition 1. B gives (unit-gain) relative measurements between
subsystem outputs if for each l ∈ {1, . . . ,Nz} there exist qj, qk such
that

1. (B)l,m = 0 for m ∉ qj ∪ qk

2.

m∈qj

|(B)l,m| =


m∈qj

(B)l,m

=


m∈qk

|(B)l,m| = −


m∈qk

(B)l,m = 1.

That means, each row l of B measures the difference between
a convex combination of outputs of subsystem j and a convex
combination of outputs of subsystem k. ForN = 1, BT would be the
oriented incidence matrix of some graph ΓB, where subsystems are
nodes and sensors are edges; for N > 1, BT has the interpretation
of a generalized incidence matrix, with matrix-valued weights
on each edge (Barooah & Hespanha, 2007). The (generalized)
Laplacian matrix of ΓB is L = BTB. If (L)l,m ≠ 0 for some l ∈ qj
and m ∈ qk, then subsystems j and k are connected in ΓB.

Definition 2. A spatial structureS of dimension γ ∈ N associates a
position p(k) ∈ Rγ to each subsystem k such that ∥p(k)−p(l)∥ ≥ 1
for l ≠ k.

Definition 3. Given a spatial structure and a fixed spatial range
ρ ≥ 1, measurement map B gives local relative measurements of
range ρ if it gives relativemeasurements and it only connects in ΓB
subsystems for which ∥p(k) − p(l)∥ ≤ ρ. We call this distributed
sensing.

Many decentralized control settings associate a local measure-
ment to each subsystem (graph node). With distributed sensing in
contrast,measurements are the result of interactions between subsys-
tems (graph edges).

Remark 1. Local sensing has no meaning if it is not relative. Sen-
sors giving ‘‘absolute’’ e.g. positions actually physically measure
positions with respect to a common (‘‘central’’) reference phys-
ically shared among all sensors. Absolute measurements thus
correspond to centralized sensing. This is also acknowledged
in the robotics community, distinguishing local∼=onboard from
global∼=offboard sensors, see e.g. Bräunl (2008, Chapter 3).

We study disturbance rejection limitations due to distributed
sensing with ρ

M ≪ 1. In the following two applications this arises
asM increaseswith the size of a large-scale plantwhile ρ is limited
by sensor technology.
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