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a b s t r a c t

This paper deals with the problems of robust stability analysis and robust control of linear discrete-
time periodic systems with a delayed state and subject to polytopic-type parameter uncertainty in the
state-space matrices. A robust stability criterion independent of the time-delay length as well as a delay-
dependent criterion is proposed, where the former applies to the case of a constant time-delay and the
latter allows for a time-varying delay lying in a given interval. The developed robust stability criteria
are based on affinely uncertainty-dependent Lyapunov–Krasovskii functionals and are given in terms of
linear matrix inequalities. These stability conditions are then applied to solve the problems of robust
stabilization and robust H∞ control via static periodic state feedback. Numerical examples illustrate the
potentials of the proposed robust stability and control methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclic processes are quite often encountered in nature and
engineering and thus periodic systems find application in a wide
range of different fields, as for instance, economics, population
dynamics, signal processing in the presence of cyclostationary
noise, control of multirate plants, and multiplexed systems (see,
for instance, Bittanti, 1986, Bittanti & Colaneri, 2009, and the
references therein).

Over the past three decades linear periodic systems have been
attracting significant interest within the control community and
significant advances have been achieved in a variety of topics of
the theories of control and state estimation. A large spectrum of
important results on control and filtering analysis and synthesis
have been developed to solve a variety of problems, as for
instance, pole placement (Aeyels &Willems, 1995; Colaneri, 1991),
characterization of all stabilizing controllers (Bittanti & Colaneri,
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1999), robust stabilization (de Souza & Trofino, 2000; Farges,
Peaucelle, Arzelier, & Daafouz, 2007), robust tracking (Grasselli,
Longhi, Tornambè, &Valigi, 1996),H∞ control (Colaneri &de Souza,
1992; Köse, 2002), H2 control (Farges et al., 2007; Wiśniewskiand
& Stoustrup, 2001), dissipativity (Yakubovich, Fradkov, Hill, &
Proskurnikov, 2007), model predictive control (Gondhalekar &
Jones, 2009), adaptive control (Tian & Narendra, 2009), adaptive
robust regulation (Zhang & Serrani, 2009), fault detection (Fadali,
Colaneri, & Nel, 2003), minimum mean-square state estimation
(e.g., Bittanti, Colaneri, & De Nicolao, 1988, 1991 de Souza, 1991,
and the references therein), and H∞ filtering (Bittanti & Cuzzola,
2001; Xie & de Souza, 1993; Xie, de Souza, & Fragoso, 1991). In
spite of all these developments, little attention has been devoted
in the literature to the problems of robust stability analysis and
robust control design for linear periodic systems with a time-
delayed state. The motivation for considering time-delays in the
framework of periodic systems is that time-delays are encountered
in a number of applications due to transport ofmaterial lags and/or
communication delays. A relevant example is in multirate control
of networked control systems with time-delay from the sensor
to the controller and/or from the controller to the actuator. It
is widely known that time-delay arises pervasively in dynamic
systems and very often is the cause for instability and poor
performance of control systems (Gu, Kharitonov, & Jie, 2003). In
the context of linear periodic systems with time-delay, Letyagina
and Zhabko (2009) has studied the stability of continuous-time
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systems, whereas some results on asymptotic stability of discrete-
time systems with a time-delayed state have been proposed in de
Souza andCoutinho (2010), including robust stability criteria in the
context of convex-bounded parameter uncertainty. However, it is
hard to apply the later results for designing stabilizing controllers.

In this paper, we firstly consider the problem of robust
stability analysis for linear discrete-time periodic systems subject
to time-delay in the state variables and polytopic-type parameter
uncertainty in the matrices of the state-space model. Both delay-
independent and delay-dependent criteria of robust stability
which are tailored for state feedback control synthesis are
developed, where the former deals with a constant time-delay and
the latter applies to the case of a varying time-delay lying in a given
interval. The proposed stability conditions are based on affinely
uncertainty-dependent Lyapunov–Krasovskii functionals and are
cast via linear matrix inequalities (LMIs). The robust stability
results are then adapted to solve problems of robust stabilization
and robust H∞ control via static periodic state feedback.

The paper is organized as follows. Section 2 introduces the
class of systems studied in the paper and the formulation of the
problems to be tackled. Section 3 develops methods of robust
stability analysis. In Section 4, we derive techniques for designing
robustly stabilizing static periodic state feedback controllers,
whereas Section 5 proposes methods of robust H∞ control.
Numerical examples are presented throughout the paper to
demonstrate the effectiveness of the proposed robust stability
analysis and robust control methods. Finally, concluding remarks
are drawn in Section 6.
Notation. Z is the set of integers, Z+ is the set of nonnegative
integers, Rn is the n-dimensional Euclidean space, Rm×n is the
set of m × n real matrices, In is the n × n identity matrix, 0n
is the n × n matrix of zeros, ST denotes the transpose of S, and
diag{· · ·} is a block-diagonalmatrix. For symmetric blockmatrices,
⋆ stands for the transpose of the blocks outside of themaindiagonal
block. A matrix S(k) is denoted N-periodic, where 0 < N ∈

Z+, if S(k + N) = S(k), for all k ∈ Z. For a real N-periodic
matrix, S(k) nonsingular and S(k) > 0 (S(k) ≥ 0) mean that
S(k) is respectively nonsingular and symmetric positive definite
(positive semi-definite) for k = 1, . . . ,N . ℓ2 denotes the space of
squared summable vector sequences over Z+ with norm ∥ x ∥2 :=

(


∞

k=0 ∥ x(k)∥2)
1
2 , where ∥ · ∥ is the Euclidean vector norm.

2. Systemmodel and preliminaries

Consider the following uncertain linear discrete-time periodic
system:
x(k + 1) = A(k)x(k) + Ad(k)x(k − d(k)) + B(k)u(k)
x(k) = φ(k), k = −d2, −d2 + 1, . . . , 0 (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rnu is the control input,
d(k) is a time-delay, which is a positive integer to be specified
in the sequel, φ(k) is the system initial sequence, d2 is a given
positive integer that represents themaximum allowed time-delay,
and A(k), Ad(k) and B(k) are uncertain N-periodic real matrices
with appropriate dimensions that are assumed to be confined to
the following polytope:

Ω(k) =


Π(k) : Π(k) =

υ
i=1

λi Πi(k), λi ≥ 0,
υ

i=1

λi = 1


(2)

where

Π(k) =

A(k) Ad(k) B(k)


, (3)

Πi(k) =

Ai(k) Adi(k) Bi(k)


, (4)

with Ai(k), Adi(k) and Bi(k), i = 1, . . . , υ , being given N-periodic
real matrices. For notation simplicity, we denote

Ω :=

Ω(k), k = 1, . . . ,N


(5)

as the uncertainty polytope. Note that υ = 1 corresponds to the
case where system (1) is uncertainty free.

This paper aims at designing a stabilizing static state feedback
for the system (1) as below

u(k) = K(k)x(k) (6)

where K(k) is an N-periodic matrix to be found such that the
closed-loop system is asymptotically stable for all systemmatrices
belonging to the uncertainty polytope Ω . In this case, the closed-
loop system is said to be Ω-robustly stable. Both the settings
of delay-independent and delay-dependent Lyapunov–Krasovskii
stability conditionswill be treated. For each of these cases, we shall
consider different assumptions for the time-delay as follows:
Case 1 (delay-independent stability). The time-delay is assumed to
be constant, namely d(k) = d2 > 0, ∀ k ∈ Z+.
Case 2 (delay-dependent stability). The time-delay d(k) is time-
varying and satisfies

d1 ≤ d(k) ≤ d2, ∀ k ∈ Z+ (7)

where d2 > d1 > 0 are given integers.
The motivation for considering a time-varying delay is that this

phenomenon often appears in a number of applications as, for
instance, in multirate control of networked control systems where
the time-delay is due to time-varying communication delays.

In this paper, we shall develop LMI based conditions for robust
stabilization and robust H∞ control for the Cases 1 and 2 as above.
Firstly, we will derive LMI conditions for assessing the robust
stability of the unforced system of (1), which are later applied for
designing robust stabilizing and robustH∞ periodic state feedback
controllers.

3. Robust stability analysis

In de Souza and Coutinho (2010), the authors have derived
delay-independent and delay-dependent LMI conditions to ascer-
tain the robust stability of discrete-time periodic systems with
time-delay. However, it turns out that it is hard to apply these con-
ditions to design stabilizing state feedback. In the following, we in-
troduce two new robust stability results for the system (1)–(4) for
the Cases 1 and 2, which are tailored for state feedback robust con-
trol synthesis.

3.1. Delay-independent robust stability

Theorem 1. Consider the uncertain system (1)–(4) with u(k) ≡ 0
and a given constant time-delay d(k) = d2. Suppose there exist N-
periodic matrices G(k), Ri(k) > 0 and Wi(k) > 0, i = 1, . . . , υ ,
satisfying the following LMIs:

Ui(k) ⋆ ⋆
0 −Ri(k − d2) ⋆

Ai(k)G(k) Adi(k)G(k − d2) −Wi(k + 1)


< 0,

k = 1, . . . ,N, i = 1, . . . , υ, (8)

where

Ui(k) = −G(k) − GT (k) + Wi(k) + Ri(k).

Then, system (1) with u(k) ≡ 0 is Ω-robustly stable for any finite
time-delay d2.

Proof. See Appendix A.
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