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a b s t r a c t

In this paper, we discuss new efficient algorithms for nonnegative matrix factorization (NMF)
with smoothness constraints imposed on nonnegative components or factors. Such constraints
allow us to alleviate certain ambiguity problems, which facilitates better physical interpretation
or meaning. In our approach, various basis functions are exploited to flexibly and efficiently
represent the smooth nonnegative components. For noisy input data, the proposed algorithms
aremore robust than the existing smooth and sparse NMF algorithms. Moreover, we extend the
proposed approach to the smooth nonnegative Tucker decomposition and smooth nonnegative
canonical polyadic decomposition (also called smooth nonnegative tensor factorization). Finally,
we conduct extensive experiments on synthetic and real-world multi-way array data to
demonstrate the advantages of the proposed algorithms.

& 2015 Published by Elsevier B.V.

1. Introduction

Nonnegative matrix/tensor factorization (NMF/NTF) plays
an important role in feature extraction, classification, blind
source separation (BSS), denoising, completion of missing
values, and clustering of nonnegative signals [4,8,9,11–13,18,
22,25,30,37,40].

The standard NMF model is given by

YffiAXAR
I�J
þ ; ð1Þ

where A¼ ½a1; a2; …; aR�ARI�R
þ , XAR

R�J
þ , and Y ¼ ½y1; y2;

…; yJ � is an input matrix consisting of J observed signals.
The goal of NMF is to compute A and X from the matrix Y
for a given parameter R. For example, we consider Rr J5 I
in BSS problems [5]. In this case, we want to find R latent
source signals from J mixed observations. NMF gives A as

an estimator of the latent source signals. In the case of
extracting parts of facial images [22], I and J denote the
number of pixels in an image and the number of images,
respectively. NMF then represents each facial image as a
linear combination of R nonnegative parts. In the case of
clustering tasks [37], A is the set of cluster centroids, and X
represents the weight parameters of the clusters.

The standard criterion for NMF based on the Euclidean
distance is given by

min‖Y�AX‖2F ; s:t: AZ0; XZ0; ð2Þ
where ‖ � ‖F stands for the Frobenius norm. Obviously, it
minimizes the Euclidean distance between the observed
signals Y and the model AX, imposing nonnegativity con-
straints onto latent source and mixing matrices. When there
is no constraint, this decomposition model has an unlimited
number of solutions, and it cannot provide any meaningful
decomposition. However, nonnegativity constraints narrow
down the set of the solutions to these which have some
meaning for the latent components and the mixing systems.
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Such constraints imposed to both factors A and X can be
justified by a non-subtracting mixing system of nonnegative
signals, which can reduce redundancy of the solution.

Moreover, non-subtracting mixing systems are used for
modeling light, sound, electromagnetic spectra, probability
density functions, and image/video brightness. The observed
signals, mixing matrices, and latent components are nonne-
gative, and NMF represents them using the linear super-
position system (1). Hence NMF is a useful tool to analyze
such kinds of data. The nonnegativity constraint plays an
important role in physical interpretation of the decomposi-
tion and extraction of non-redundant signals from physically
mixed observations. Basically, luminance signals, spectral
signals, textual data, and financial data should be nonnegative,
and their latent components are often preferred to be non-
negative for meaningful interpretation of the feature vectors.

In general, NMF/NTF is not unique. Thus, for many types of
data, we need to impose some additional constraints to relax
the problem of non-uniqueness and obtain physically mean-
ingful components. To date, most researchers have imposed
sparsity constraints [14,16,18]. In this paper, we investigate
another fundamental constraint: smoothness. The smooth-
ness means that the differences between neighboring values
are small in some domain. For example, harmonic signals are
smooth in the time domain and sparse in the frequency
domain. Considering the nonnegative signals, natural image
signals are smooth in the spatial domain, probability density
functions may be often smooth in some domain, and spectral
intensity of optical waves is smooth in the wavelength
domain. The latent components of the above signals may be
smooth and nonnegative, and the mixing matrices could be
assumed as nonnegative based on non-subtracting physical
mixing systems. For this reason, NMF/NTF with smoothness
constraints is very useful to analyze such kinds of data. When
we assume the non-smooth noise is included in observations,
this version of NMF, which is referred to as the smooth NMF,
may reduce the effects of the noise on the estimators of
nonnegative and smooth latent components. In other words,
it should be robust to non-smooth noise. In fact, smooth NMF
is useful for analyzing temporally or spatially smooth signals
(e.g., natural image data, brain waves, and financial data)
[4,12,13,38–40].

Many smooth NMF methods can generally be separated
into two groups. In the first one, a smoothness constraint term
is added to the NMF criterion. For example, Chen et al. [4]
proposed the addition of a temporal smoothness constraint
and a spatial decorrelation constraint into the Frobenius norm,
and into the Kullback–Leibler (KL) divergence-based NMF for
electroencephalography (EEG) analysis. Zdunek and Cichocki
[39,40] added a Gibbs regularization term for smooth NMF.
Drakakis et al. [12] incorporated a sparseness constraint into
the mixing matrix, and a smoothness constraint was added to
the feature matrix in the Frobenius norm and KL divergence-
based NMF for the analysis of financial data. Essid and Fevotte
[13] applied the KL divergence-based smooth NMF for audio-
visual document structuring, and Dong and Li [11] reported
the application of smooth NMF using Laplacian regularization
for incomplete matrix factorization.

In the second group, the feature vectors are approxi-
mated by a linear combination of several smooth basis
vectors. This approach was first proposed by Zdunek [38],

where Gaussian radial basis functions (GRBFs) were used
with a single standard deviation parameter. This GRBF-NMF
method provides effective performance for robust data
analysis with respect to noise. However, the original algo-
rithm was relatively slow, because it employed quadratic
programming (QP) optimization and the active-set algo-
rithm. The computational cost of QP optimization increases
exponentially for large-scale problems. Thus, the original
GRBF-NMF algorithm is not practical for large-scale data.

Another problem is that research into smooth nonnega-
tive ‘tensor’ factorization is not sufficiently well progressed,
despite many promising potential applications exist. One
reason for this is that most existing algorithms for smooth
NMF are quite complex and have a very high computational
cost. In this paper, we address the following objectives:
to simplify the GRBF-NMF method and develop a new
practical algorithm (i.e., reduce the computational cost); to
extend the method to the nonnegative Tucker and canonical
polyadic (CP) decompositions with additional smoothness
constraints. For this purpose, we modify the original pro-
blem and propose a new fast algorithm based on the
hierarchical alternating least-squares (HALS) method, [6,8],
which is a fast and stable algorithm for general NMF/NTF.
Furthermore, we propose two extensions for GRBF-NMF. The
first uses more flexible basis functions that consist of
Gaussian functions with multiple standard deviation para-
meters. The second one involves two-dimensional Gaussian
functions for processing image data. We call this extension
GRBF-NMF-2D basis.

For the second objective, we propose two algorithms
for smooth nonnegative Tucker decomposition (NTD) and
smooth nonnegative CP decomposition (NCPD). These are
extensions of our HALS-based GRBF-NMF algorithm. We call
these extensions GRBF-NTD and GRBF-NCPD. Furthermore,
the NTF methods are extended to the ‘2D basis’ case. Note
that we can select the target modes on which to impose the
smoothness constraint. For example, for a 3D tensor with
the temporally smooth domain (the first mode), the spatially
smooth domain (the second mode), and the trial non-
smooth domain (the third mode), the smoothness constraint
can be applied to only the first and the second modes.

The remainder of this paper is organized as follows.
Section 2 introduces the original GRBF-NMF algorithm for
a smooth representation. In Section 3, we propose a novel
fast algorithm for GRBF-NMF, and discuss its extensions.
Section 4 explores the tensor versions of our approach
based on the Tucker and CP models. In Section 5, we
investigate the performance and applications of our new
HALS-based GRBF-NMF/NTF algorithms, and compare
them with some state-of-the-art methods. In Section 6,
we discuss several aspects of our work, including potential
applications and open problems. Finally, we give our
conclusions in Section 7.

2. Smooth nonnegative matrix factorization with
function approximation

In this section, we review the basic smooth NMF model
using the function approximation proposed by Zdunek
[38]. According to this method, a feature vector ar is
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