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a b s t r a c t

This work proposes a robust fault detection and isolation (FDI) scheme for linear discrete-time systems
subject to faults, bounded additive disturbances and norm-bounded structured uncertainties. FDI is
achieved by computing, on-line, upper and lower bounds on the fault signal such that a fault is regarded
as having occurred when its upper bound is smaller than zero or lower bound is larger than zero.
Linear Matrix Inequality (LMI) optimization techniques are used to obtain the bounds. Furthermore,
a subsequent-state-estimation technique, together with an estimation horizon update procedure, is
proposed, which allows the on-line FDI process to be repeated in a moving horizon procedure. The
approach is also extended to solve the fault detection (FD) problem of obtaining lower bounds on the total
fault signal energy within the estimation horizon. The scheme gives the best estimates of the fault signals
given the information available and is sufficiently flexible to incorporate other information that may be
available, such as bounds on the disturbance energy. Thus our scheme is immune to false alarms if the
system and disturbance are within the uncertainty description. Moreover, we propose a new robustness
result to obtain the bounds, which is an extension of current techniques for handlingmodel uncertainties.
Finally, the approach is verified using two numerical examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing requirements on control system reliability
and security, much attention has been devoted to the design of FDI
systems (Jaimoukha, Li, & Papakos, 2006; Li & Jaimoukha, 2009;
Li, Mazars, Zhang, & Jaimoukha, 2012; Ye, Wang, & Ding, 2004;
Zhang & Ding, 2008; Zhang & Jaimoukha, 2009; Zhong, Ding, Lam,
& Wang, 2003; Zhong, Ding, Tang, Zhang, & Jeinsch, 2001). There
are two main approaches for FDI: observer-based and parity space
approaches.

Observer-based approaches exploit analytic redundancy and
use a mathematic model of the system to design an observer
generating residual signals that provide fault signatures (Mazars,
Jaimoukha, & Li, 2008; Zhong et al., 2003, 2001). The observer ef-
fectively cancels the (nominal) process dynamics and generates a
residual signalwhich is sensitive only to disturbances, plant/model
mismatch (often recast as disturbances) and faults. The design ob-
jective is then transformed to a sensitivity optimization problem,

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised formbyAssociate Editor Yasumasa Fujisaki
under the direction of Editor Roberto Tempo.

E-mail addresses: ze.zhang06@imperial.ac.uk (Z. Zhang),
i.jaimouka@imperial.ac.uk (I.M. Jaimoukha).
1 Tel.: +44 2075946279; fax: +44 2075946282.

which seeks to increase the sensitivity of the residual to faults
and simultaneously reduce the sensitivity to disturbances and
plant/model mismatch. However, a drawback of these approaches
is that their effectiveness depends on the accuracy of the system
model, which cannot usually be guaranteed in practice.

In parity space approaches, a residual generator is designed by
computing, off-line, a parity vector or matrix which completely
decouples the system state and improves the sensitivity of the
residual to faults and robustness to disturbances (Ye et al., 2004;
Zhang & Ding, 2007; Zhong, Ding, & Shi, 2009). Input and output
measurements are then collected over an estimation horizon to
generate the residual. Since parity-space-based FD design only
involves vector or matrix valued mathematical operations, it has
attracted research interest and wide attention from industry for
applications (Zhang & Ding, 2008).

In this paper, an on-line approach is proposed to solve robust
FDI problems for linear discrete-time systems subject to faults,
bounded additive disturbances and norm-bounded structured
uncertainties. This scheme uses a dynamic system model as well
as input/output measurements over an estimation horizon to
compute upper and lower bounds on the fault signals at each
sampling instant. Then a fault is regarded as having occurredwhen
its upper bound is smaller than zero or lower bound is larger
than zero. LMI optimization techniques are employed to obtain the
bounds. Furthermore, a subsequent-state-estimation technique
togetherwith an estimation horizon update procedure is proposed,
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which allows the on-line FDI process to be repeated in a moving
horizon procedure. Also, the proposed approach reduces to the
solution of a set of linear programswhen there are no uncertainties
in the model description and it is shown that, compared with
solving FDI problems, this approach gives better reliability and
fault detectability for the FD problem. Preliminary versions of our
approach, which only considered restricted classes of uncertainty,
have appeared in Zhang and Jaimoukha (2009) and Zhang and
Jaimoukha (2010).

In common with the parity space approach, we use a dynamic
system model as well as input/output measurements over an
estimation horizon. The main difference is that, instead of using a
pre-computed parity vector to define a residual signal, we compute
bounds on the faults by solving on-line optimization problems
subject to the constraints of the bounds on the initial state,
disturbances and norm-bounded structured uncertainties. One
feature of our approach is that available bounds on the initial state
can be used and the initial state does not need to be decoupled,
which is an advantage especially for uncertain systems.

This work is organized as follows. After defining the notation,
Section 2 defines the problem setting. Section 3, of independent
interests, develops a new and general robustness tool for handling
the types ofmodel uncertainties considered in this paper. Section 4
gives the problem formulation and derives bounds on the fault
signals in the form of solutions to LMI problems. In Section 5,
an overall FDI algorithm is presented and its properties are
investigated. Two examples from the literature are given in
Section 6 to demonstrate the effectiveness of the proposed scheme.
Finally, Section 7 summarizes this work.

The notation is fairly standard. Rn×m denotes the set of real
n × m matrices. For A ∈ Rn×m, AT denotes the transpose. The ith
eigenvalue of A ∈ Rn×n is denoted by λi(A). For A = AT , A ≽

0 (A ≼ 0) denotes that A is positive (negative) semidefinite, that
is, λi(A) ≥ 0 (≤ 0) ∀ i. For x, y ∈ Rn, x < y and x ≤ y
denote element-wise inequalities. If S ⊆ Rn×m is a subspace,
BS = {S ∈ S : ∥S∥ ≤ 1} denotes the unit ball of S where
∥S∥ = maxi λi(SST ) denotes the matrix norm. In denotes the n× n
identity matrix and 0n×m denotes the n × m null matrix with the
subscripts dropped if they can be inferred from context. Sn, Sn

+
and

Dn
+
denote the sets of all realn×n symmetric, positive semidefinite

and positive semidefinite diagonal matrices, respectively.

2. FDI problem setting

Consider a linear time-invariant (LTI) discrete-time system
subject to disturbances, process, actuator and sensor faults and
uncertainties of the form

xk+1 = Axk + Bddk + Bf fk + Buuk + Bppk
yk = Cyxk + Dyddk + Dyf fk + Dyuuk + Dyppk
qk = Cqxk + Dqddk + Dqf fk + Dquuk

pk = ∆0qk

(1)

for k ∈ N , where N := {0, . . . ,N − 1} is the estimation horizon,
xk ∈ Rn, uk ∈ Rnu and yk ∈ Rny are the state, input, output and
uncertainty vectors, respectively, pk, qk ∈ Rn∆ are the input and
output uncertainty vectors, respectively and dk ∈ Rnd and fk ∈

Rnf are the disturbance and fault vectors, respectively. Also given
are the system, fault, disturbance and uncertainty distribution
matrices of appropriate dimensions (Frank & Ding, 1997). The
uncertainty matrix ∆0 is assumed to be a norm-bounded
structured matrix, ∆0 ∈ B10 where 10 ⊆ Rn∆×n∆ is a structured
subspace, typically block diagonal with full and repeated blocks;
see Zhou, Doyle, and Glover (1996) for a description.

We also assume that the initial state and disturbances are
unknown, but that upper and lower bounds x̄0, x0, d̄k and dk are

available so that x0 ≤ x0 ≤ x̄0 and dk ≤ dk ≤ d̄k for all k ∈ N .
Also assume that measurements of the input and output signals uk
and yk are available for all k ∈ N . Define x = [xT1 · · · xTN ]

T and
ξ = [ξ T

0 · · · ξ T
N−1]

T
∈ RNξ where Nξ = N · nξ with ξ standing for

d, d̄, d, f , p, q, u and y, take np = nq = n∆ and nd̄ = nd = nd. Using
an iteration,

x = Ax0 + Bdd + Bf f + Buu + Bpp
y = Cyx0 + Dydd + Dyf f + Dyuu + Dypp
q = Cqx0 + Dqdd + Dqf f + Dquu + Dqpp,

p = ∆q, ∆ ∈ B1, 1 = IN ⊗ 10 ⊂ RN∆×N∆

(2)

where ⊗ denotes the Kronecker product, N∆ = Nn∆ and

A =

 A
...

AN−1

 , Bζ =

 Bζ · · · 0
...

. . .
...

AN−1Bζ · · · Bζ


Cβ =

 Cβ

...

CβAN−1

 , Dβζ =

 Dβζ · · · 0
...

. . .
...

CβAN−2Bζ · · · Dβζ


(3)

where β stands for q and y and ζ for d, f , u and p, and note that
Dqp = 0. To simplify the presentation, define

w = [xT0 dT ]T , w = [xT0 dT ], w̄ = [x̄T0 d̄T ],
Bw = [A Bd], Dyw = [Cy Dyd], Dqw = [Cq Dqd],

and Nw = n + Nd and note that

w ≤ w ≤ w̄. (4)

Eliminating p from (2) using p = ∆q gives

x = B∆
ww + B∆

f f + B∆
u u, y = D∆

yww + D∆
yf f + D∆

yuu (5)

where B∆
ζ = Bζ + Bp∆̂Dqζ and D∆

yζ = Dyζ + Dyp∆̂Dqζ and
where ∆̂ := ∆(I − Dqp∆)−1 and ζ stands for w, f and u.

3. Robustness results for structured uncertainty

Since the FDI system we consider includes norm-bounded
structured uncertainties, in this section we derive a new ro-
bustness result for matrix inequality constraints that involve a
quadratic term in the uncertainty. This will be used later when we
evaluate the bounds on the fault signals. The followingwell-known
lemma is needed for our robustness results.

Lemma 1 (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994). Let A0,
A1 ∈ Sn and assume that zTA1z > 0 for some z. Then xTA0x ≥ 0
for all x satisfying xTA1x ≥ 0 if and only if there exists 0 ≤ τ ∈ R
such that A0 − τA1 ≽ 0.

The next robustness theorem for unstructured uncertainty is a
corollary of the above result.

Theorem 2. Let T1 ∈ Sn, T2 ∈ Rn×m, T3 ∈ Rm×n, T4 ∈ Rm×m,
T5 ∈ Sm and let 1 = Rm×m. Then det(I − T4∆) ≠ 0 and
T (∆) := T1 + T2∆̂T3 + T T

3 ∆̂TT T
2 + T2∆̂T5∆̂TT T

2 ≽ 0 for all ∆ ∈ B1,
where ∆̂ := ∆(I − T4∆)−1, if and only if ∥T4∥ < 1 and there exists
0 ≤ τ ∈ R such that
T1 − τT2T T

2 T T
3 − τT2T T

4
⋆ T5 + τ(I − T4T T

4 )


≽ 0 (6)

where ⋆ denotes terms readily deduced from symmetry.
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