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a b s t r a c t

We consider the problem of a particle traveling from an initial configuration to a final configuration (given
by a point in the plane along with a prescribed velocity vector) in minimum timewith non-homogeneous
velocity and with constraints on the minimum turning radius of the particle over multiple regions of
the state space. Necessary conditions for optimality of these paths are derived to characterize the nature
of optimal paths, both when the particle is inside a region and when it crosses boundaries between
neighboring regions. These conditions are used to characterize families of optimal and nonoptimal paths.
Among the optimality conditions, we derive a ‘‘refraction’’ law at the boundary of the regions that
generalizes the so-called Snell’s law of refraction in optics to the case of paths with bounded curvature.
Tools employed to deduce our results include recent principles of optimality for hybrid systems. A
numerical example is given to demonstrate the derived results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Pontryagin’sMaximumPrinciple (Pontryagin, Boltyanskij, Gam-
krelidze, &Mishchenko, 1962) is a very powerful tool to derive nec-
essary conditions for optimality of solutions to a dynamical system.
In otherwords, this principle establishes the existence of an adjoint
function with the property that, along optimal system solutions,
the Hamiltonian obtained by combining the system dynamics and
the cost function associated to the optimal control problem ismin-
imized. In its original form, this principle is applicable to optimal
control problems with dynamics governed by differential equa-
tions with continuously differentiable right-hand sides.

The shortest path problem between two points with specific
tangent directions and bounded maximum curvature has received
much attention in the literature. In his pioneering work in Dubins
(1957), by means of geometric arguments, Dubins showed that
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optimal paths to this problemconsist of a concatenation of nomore
than three pieces, each of them describing either a straight line,
denoted by L, or a circle, denoted by C (when the circle is traveled
clockwise, we label it as C+, while when the circle is traveled
counter-clockwise, C−), and are either of type CCC or CLC, that
is, they are among the following six types of paths

C−C+C−, C+C−C+, C−LC−, C+LC+, C+LC−, C−LC+ (1)

in addition to any of the subpaths obtained when some of the
pieces (but not all) have zero length. More recently, the authors
in Boissonnat, Cérézo, and Leblond (1994) recovered Dubins’ result
by using Pontryagin’s Maximum Principle. Further investigations
of the properties of optimal paths to this problem and other related
applications of Pontryagin’s Maximum Principle include Balkcom
and Mason (2002), Chitsaz, LaValle, Balkcom, and Mason (2006)
and Shkel and Lumelsky (2001) to just list a few.

1.2. Contributions

We consider the minimum-time problem of having time-
parametrized paths with bounded curvature for a particle, which,
as in the problem by Dubins, travels from a given initial point
to a final point with specified velocity vectors, but with non-
homogeneous traveling speeds and curvature constraints: the
velocity of the particle and the minimum turning radius are pos-
sibly different at certain regions of the state space. (Note that since
the velocity of the particle in the problem by Dubins is constant,
the minimum-length and minimum-time problems are equiva-
lent; while the problem with different velocities and curvature
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constraints is most interesting for theminimum-time case.) Such a
heterogeneity arises in several robotic motion planning problems
across environments with obstacles, different terrains properties,
and other topological constraints. Current results for optimal con-
trol under heterogeneity, which include those in Alexander and
Rowe (1990) and Rowe and Alexander (2000), are limited to parti-
cles describing straight paths. Furthermore, optimal control prob-
lems exhibiting such discontinuous/impulsive behavior cannot be
solved using the classical Pontryagin’s Maximum Principle. Exten-
sions of this principle to systems with discontinuous right-hand
side appeared in Sussmann (1997) while extensions to hybrid sys-
tems include Shaikh and Caines (2007) and Sussmann (1999a).
These principles establish the existence of an adjoint function
which, in addition to conditions that parallel the necessary opti-
mality conditions in the principle by Pontryagin, satisfies certain
conditions at times of discontinuous/jumping behavior. The appli-
cability of these principles to relevant problems have been high-
lighted in D’Apice, Garavello, Manzo, and Piccoli (2003), Piccoli
(1999) and Sussmann (1999a). These will be the key tools in de-
riving the results in this paper.

Building from preliminary results in Sanfelice and Frazzoli
(2008) and exploiting recent principles of optimality for hybrid
systems, we establish necessary conditions for optimality of paths
of particles with bounded curvature traveling across a state space
that is partitioned into multiple regions, each with a different
velocity and minimum turning radius. Necessary conditions for
optimality of these paths are derived to characterize the nature of
optimal paths, both when the particle is inside a region and when
it crosses boundaries between neighboring regions. A ‘‘refraction’’
law at the boundary of the regions that generalizes the so-called
Snell’s law of refraction in optics to the case of paths with bounded
curvature is also derived. The optimal control problem with a
‘‘refraction’’ law at the boundary can be viewed as an extension of
optimal control problems in which the terminal time is governed
by a stopping constraint, as considered in Lin, Loxton, Teo, andWu
(2011, 2012). The necessary conditions we derived also provide
a novel alternative to optimizing a switched system without
directly optimizing the switching times as decision variables, as is
commonly done in a vast majority of papers dealing with switched
system optimization, e.g. Jiang, Teo, Loxton, and Duan (2012)
and Wu and Teo (2006). Applications of these results include
optimal motion planning of autonomous vehicles in environments
with obstacles, different terrains properties, and other topological
constraints. Strategies that steer autonomous vehicles across
heterogeneous terrain using Snell’s law of refraction have already
been recognized in the literature and applied to point-mass
vehicles; see, e.g., Alexander and Rowe (1990) and Rowe and
Alexander (2000), and more recently, Kwok and Martinez (2010).
Our results extend those to the case of autonomous vehicles
with Dubins dynamics, consider the case when the state space is
partitioned into finitely many regions, and allow for the velocity of
travel and minimum turning radius to change in each region. The
results are demonstrated numerically using the software package
GPOPS (Rao et al., 2010). An extended version of this paper is
available at Sanfelice, Yong, and Frazzoli (2013).

The organization of the paper is as follows. Section 2 states the
problem of interest and outlines the solution approach. Section 3
presents the main results: necessary conditions for optimality
of paths, refraction law at the boundary of the regions, and
characterization of families of optimal and nonoptimal paths. A
numerical example is given in Section 4.

1.3. Notation

We use the following notation throughout the paper. Rn

denotes n-dimensional Euclidean space. R denotes the real

Fig. 1. Initial point (x, y)i and final point (x, y)f with given velocity vectors on
regions P1 and P2 . The minimum turning radius in region P1 is smaller than the
one in region P3 , which is smaller than the one in region P2 as denoted by the
depicted paths with minimum turning radius.

numbers. R≥0 denotes the nonnegative real numbers, i.e., R≥0 =

[0, ∞). N denotes the natural numbers including 0, i.e., N =

{0, 1, . . .}. Given k ∈ N, N≤k denotes {0, 1, . . . , k} and, if k > 0,
N<k denotes {0, 1, . . . , k − 1}. Given a set S, S denotes its closure,
S◦ denotes its interior, and ∂S denotes its boundary. Given a vector
x ∈ Rn, |x| denotes the Euclidean vector norm. Given vectors x
and y, at times, we write [x⊤, y⊤

]
⊤ with the shorthand notation

(x, y). Given a function f , its domain is denoted by dom f . Given
ui > 0 defining Ui := [−ui, ui],Ui denotes the set of all piecewise-
continuous functions u from subsets ofR≥0 toUi. The inner product
between vectors u and v is denoted by ⟨u, v⟩. A unit vector with
angle θ is denoted by ̸ θ .

2. Problem statement and solution approach

We are interested in deriving necessary conditions for a path X
describing the motion of a particle, which starts and ends at pre-
established pointswith particular velocity vectors, through regions
Pq with different constant velocity vq andminimum turning radius
rq. The dynamics of a particle with position (x, y) ∈ R2 and orien-
tation θ ∈ R (with respect to the vertical axis) are given by

ẋ = vq sin θ, ẏ = vq cos θ, θ̇ = u, (2)

where u ∈ Uq is the angular velocity input and satisfies |u| ≤ uq

:=
vq
rq
. The velocity vector of the particle is given by the vector

vq sin θ, vq cos θ
⊤. More precisely, we are interested in the fol-

lowing problem:

Problem 1. Given a connected set P ⊂ R2, N disjoint polytopes
P1, P2, . . . , PN , subsets of P , with nonempty interior and such
that P = ∪q∈{1,2,...,N} Pq, determine necessary conditions on
the minimum-time path X ⊂ P of a particle starting at a point
(x, y)i ∈ P ◦

qi , q
i

∈ {1, 2, . . . ,N}, with initial velocity vector ν i,
traveling according to (2), and ending at a point (x, y)f ∈ P ◦

qf ,
qf ∈ {1, 2, . . . ,N}, with final velocity vector ν f , where, for each
q ∈ {1, 2, . . . ,N}, vq > 0 and rq > 0 are the velocity of travel and
the minimum turning radius in Pq, respectively. △

In addition to Problem 1, we consider the special case when the
angular velocity constraints on neighboring regions have common
bounds uq. We refer to the resulting problem as Problem 1⋆.

Fig. 1 depicts the general scenario in Problem 1. Neighboring
regions are such that either their velocity of travel, their minimum
turning radius, or both are different from each other. In this way,
the number of regions with different characteristics is irreducible.

Our approach to derive a solution to Problem 1 is as follows.
Given a continuously differentiable curveX ⊂ P defining the path
of a particle starting at a point (x, y)i ∈ P ◦

qi , q
i
∈ {1, 2, . . . ,N}, with
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