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a b s t r a c t

We note that in the literature it is often taken for granted that for fractional-order system without
delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-
known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-
order nonlinear system described by Caputo’s or Riemann–Liouville’s definition, any equilibrium cannot
be finite-time stable as long as the continuous solution corresponding to the initial value problem globally
exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used
to prove the asymptotic stability of positive fractional-order nonlinear systems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order dynamic systems have received increasing at-
tention in recent years due to their broad range of applications in
viscoelastic materials (Bagley & Torvik, 1986), control engineer-
ing (Oustaloup, Mathieu, & Lanusse, 1995; Podlubny, 1999b), frac-
tional electrical circuits (Nakagawa&Sorimachi, 1992), and chaotic
systems (Lu & Chen, 2006). A distinguished feature of fractional-
order systems is their memory effects, which can be utilized to
characterize some physical phenomena or complex systems more
precisely.

Stability analysis is a basic problem in control theory. The
stability region for linear time-invariant fractional-order system is
firstly given in Matignon (1996). Then the LMI characterizations
for the stability region with fractional order α ∈ (1, 2) and α ∈

(0, 1) are presented in Chilali, Gahinet, and Apkarian (1999) and
Farges,Moze, and Sabatier (2010), respectively. The stability region
for fractional-order system with α ∈ (0, 1) is non-convex and
hence the LMI characterization is more difficult. There are also
some results on the stability analysis of fractional-order nonlinear
systems, one can see Li, Chen, and Podlubny (2009), Li, Chen,
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and Podlubny (2010), Trigeassou, Maamri, Sabatier, and Oustaloup
(2011) and references therein. However, as discussed in Sabatier,
Moze, and Farges (2010), the stability theory for fractional-order
nonlinear systems is still not well developed and requires further
investigation. As commented in Trigeassou et al. (2011), it may not
be realistic to use quadratic Lyapunov functions in the stability
analysis of fractional-order systems. One can see how difficult it
is to use quadratic Lyapunov function to analyze the stability in
Example 14 Li et al. (2009), where the simple scalar fractional
differential equation C

0D
α
t x(t) = −x3(t) is considered. In this paper

we also revisit this example and point out that for a class of positive
fractional-order systems, linear Lyapunov functions can be used to
discuss stability.

Fractional-order systems may have some different properties
from the classical integer-order systems. For instance, fractional-
order systems described by Caputo’s definition cannot produce
exact periodic solutions (Tavazoei &Haeri, 2009) and the fractional
derivative of a periodic function cannot be a periodic functionwith
the same period (Tavazoei, 2010). Although there is a minor flaw
in the proof in Tavazoei andHaeri (2009), the results are confirmed
in Tavazoei and Haeri (2012). Since periodic orbits are steady state
solutions, one can imagine that fractional-order systems cannot
produce steady state solutions in general. Therefore, it is natural
to guess that finite-time stable trajectories are also impossible for
fractional-order systems. However, it seems that in the literature,
it is always taken for granted that whenever the system trajectory
hits the equilibrium, it will then remain there forever.

In this paper, we first give a proof that the phenomenon
of finite-time stability will never happen in fractional-order
systems with either Caputo or Riemann–Liouville derivative. As
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a typical example, we point out that finite-time synchronization
of fractional-order chaotic systems via terminal sliding mode
control proposed in Aghababa (2012) is not possible. In addition,
some examples of stability analysis in the previous literature are
revisited and linear Lyapunov functions are used to discuss the
stability of positive fractional-order nonlinear systems.

2. Preliminaries

In this section, some basic notions and properties for fractional
calculus and fractional differential equations are recalled. For
further details, one can refer to Podlubny (1999a). Without loss
of generality, it is assumed that the lower limit of the fractional
integrals and derivatives is 0 throughout this paper.

The fractional integral with order α is defined as

0D−α
t f (t) =

1
0(α)

 t

0
(t − τ)α−1f (τ )dτ

where 0(·) is the Gamma function. There are different definitions
for fractional-order derivatives among which Caputo derivative is
the most frequently used in control engineering. In the following,
it is always assumed that α ∈ (0, 1). The αth Caputo derivative of
function f (t) is defined by

C
0D

α
t f (t) =

1
0(1 − α)

 t

0
(t − τ)−α f ′(τ )dτ

where f ′ is the first order derivative of function f . Another
definition of fractional-order derivative is Riemann–Liouville
derivative which is defined as

0Dα
t f (t) =

1
0(1 − α)

d
dt

 t

0
(t − τ)−α f (τ )dτ .

The relationship between these two definitions is given by

C
0D

α
t f (t) = 0Dα

t f (t) −
f (0)

0(1 − α)
t−α.

In particular, if f (0) = 0, then we have C
0D

α
t f (t) = 0Dα

t f (t).
A function frequently used in the solutions of fractional-order

systems is the Mittag-Leffler function which is defined as

Eα(z) =

∞
k=0

zk

0(kα + 1)
.

TheMittag-Leffler function with two parameters has the following
form:

Eα,β(z) =

∞
k=0

zk

0(kα + β)

where α > 0 and β > 0. Note that Eα,1(z) = Eα(z) and E1,1(z) =

ez . The Beta function will also be used in the sequel. In this paper,
we use the following equivalent definition of the Beta function
(Olver, Lozier, Boisvert, & Clark, 2010):

B(x, y) =

 1

0
tx−1(1 − t)y−1dt =


+∞

0

tx−1

(1 + t)x+y
dt

for all x > 0, y > 0. In the following, we will introduce the Laplace
transform of the Caputo fractional derivative. Let L denote the
Laplace transform of a function. It follows from the definition of
Laplace transform F(s) = L {f (t)} =


+∞

0 e−st f (t)dt that

L {
C
0D

α
t f (t)} = sαF(s) − sα−1f (0).

The Laplace transform of Mittag-Leffler function with two
parameters is given as

L {tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
,


Re(s) > |λ|

1
α


.

3. Main results

3.1. Caputo fractional derivative case

In what follows, we consider a general non-autonomous
fractional-order nonlinear system described by Caputo’s defini-
tion:
C
0D

αi
t xi(t) = fi(t, x(t)), i = 1, 2, . . . , n (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn and 0 < αi < 1, i =

1, 2, . . . , n denote the pseudo-state vector and the fractional order
of system (1), respectively; fi(t, x), i = 1, 2, . . . , n are nonlinear
continuous functions.

As is well known, system (1) is equivalent to a Volterra integral
equation (Diethelm & Ford, 2002):

xi(t) = xi(0) +
1

0(αi)

 t

0
(t − τ)αi−1fi(τ , x(τ ))dτ ,

i = 1, 2, . . . , n. (2)

There are many results on the existence and uniqueness of solu-
tions for the initial value problem of system (1), see for example
Daftardar-Gejji and Jafari (2007) and references therein. In this pa-
per, instead of imposing certain sufficient conditions to guarantee
the existence of solutions, let us just assume that system (1) with
a given initial condition x(0) = x0 has a continuous solution x(t)
on [0, +∞).

Remark 1. From (2), it is clear that the trajectory of system (1) is
well-defined for t > 0 once x(0) is given, thus in this case x(t)
is fully determined by x(0) in the usual sense. The trajectory of
system (1) does not require information of the semi-infinite time
interval x(τ ) (−∞ < τ ≤ 0).

A set P is called an invariant set with respect to system (1)
if for any initial value x(0) ∈ P , the trajectory x(t) ∈ P for
t ≥ 0. System (1) is called a positive system if Rn

+
is an invariant

set (Kaczorek, 2011).
The constant vector x∗

= (x∗

1, x
∗

2, . . . , x
∗
n)

T is an equilibrium
of system (1) if and only if C

0D
αi
t x∗

i = fi(t, x∗) for t ≥ 0 and
i = 1, 2, . . . , n (Li et al., 2009). Since the Caputo derivative of a
constant is 0, the equilibria of system (1) are the points satisfying
fi(t, x∗) = 0 for t ≥ 0 and i = 1, 2, . . . , n.

In this paper, we follow the classical definition of finite-time
stability. The equilibrium x = x∗ of system (1) is said to be (locally)
finite-time stable if it is stable and for the trajectory x(t) starting
from x0 located in a neighborhood of x∗, there exists a time instant
T > 0, such that x(t) = x∗ for all t ≥ T . Obviously, finite-time
stability can be regarded as a special case of asymptotic stability.
In this section, we will analytically prove that any equilibrium
of system (1) cannot be finite-time stable. Before moving on, the
following lemma is needed.

Lemma 2. Given α ∈ (0, 1) and assume that g(t) is defined on R
with g(t) = 0 for t ∉ [0, T ). Further assume that g(t) is continuous
on (0, T ] and is Lebesgue integrable on [0, T ], then T

0

g(τ )

(t − τ)α
dτ = 0, ∀t > T (3)

implies that g(t) = 0 for t ∈ (0, T ].

Proof. Note that (3) implies that tβ
 T
0

g(τ )

(t+T−τ)α
dτ = 0 for all t > 0

and β ∈ (−1, α − 1), hence
+∞

0
tβ

 T

0

g(τ )

(t + T − τ)α
dτdt = 0.
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