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a b s t r a c t

We consider infinite-dimensional port-Hamiltonian systems described on jet bundles. Based on a power
balance relation we introduce the port-Hamiltonian system representation using differential operators
regarding the structural mapping, the dissipation mapping and the input mapping. In contrast to the
well-known representation on the basis of the underlying Stokes–Dirac structure our approach is not
necessarily based on using energy-variableswhich leads to a different port-Hamiltonian representation of
the analyzed partial differential equations. The presented constructions will be specialized to mechanical
systems to which class also the presented examples belong.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling of physical systems described by partial differen-
tial equations (pdes) in a port-Hamiltonian framework has been
treated extensively over the last years. However, there are still
many open issues and there exists no unique representation.
An important contribution in this field was the introduction of
Stokes–Dirac structures which allows us to analyze field theo-
ries in a port-Hamiltonian framework and to exploit this sys-
tem representation for the controller design; see e.g. Macchelli
and Melchiorri (2004b), Macchelli, van der Schaft, and Melchiorri
(2004a,b), Maschke and van der Schaft (2005), and van der Schaft
and Maschke (2002). Roughly speaking, the key property of the
Stokes–Dirac structure is to represent the power balance relation
of physical systems in a systematic way. This is achieved by com-
bining the so-called flows and efforts in the domain and on the
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boundary of a system. Using this approach the proper choice of en-
ergy variables is crucial and theHamiltonian is also a functional de-
pending on energy variables. One key feature of the Stokes–Dirac
approach is the fact that non-zero energy flow through the bound-
ary can be considered, which is in contrast to approaches in math-
ematical physics where mainly the case of infinite domain or zero
boundary conditions is under investigation.

A different kind of a port-Hamiltonian representation also al-
lowing for non-zero energy flow through the boundary, not focus-
ing on energy variables, but also based on a power conservation
law,was proposed in Ennsbrunner and Schlacher (2005), Schlacher
(2008) and Schöberl, Ennsbrunner, and Schlacher (2008) using the
framework of jet bundles. This approach can be seen as an ex-
tension of Olver (1986) by incorporating dissipation and bound-
ary ports and it has been exploited for control issues in Schöberl
and Siuka (2013b), Siuka (2011) and Siuka, Schöberl, and Schlacher
(2011). In this contribution we will present an enhancement of
Ennsbrunner and Schlacher (2005), Schlacher (2008) and Schöberl
et al. (2008) in such away that besides the inputmap as in Schöberl
et al. (2008) also the structural mapping and the dissipation map-
ping may involve differential operators. We will specialize our
results for the class of mechanical port-Hamiltonian systems that
allow for a variational principle. It should be noted that we apply
the formal theory of pdes; this means that (geometric) properties
of the equations are treated separately from the functional analytic
properties of the solutions,where in this contributionwe adopt the
geometric point of view.
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In the approach based on Stokes–Dirac structures it is quite nat-
ural that differential operators appear (especially the interconnec-
tion mapping), since energy variables are used in contrast to the
approach presented in this paper. For instance in mechanics, the
choice of energy variables suggests to use the strain ϵ as the de-
pendent coordinate (state variable),whereas also the displacement
(configuration) w is possible. This latter choice leads to derivative
coordinates when the potential energy has to be stated, since the
energy is a function of the strain and ϵ = ∂Xw is met in the case
of a one-dimensional domain. For mechanical systems we believe
that it is desirable to be able to describe the configuration explicitly
and that it also should be possible to include forces that depend on
the configuration (or that can be derived by a potential dependent
on the configuration) which is difficult when energy variables are
used. The choice of variables also has severe consequences in the
application of the variational derivative applied to theHamiltonian
density, leading to different port-Hamiltonian representations, and
has also an impact on the computation of structural invariants; see
also Schöberl and Siuka (2013b). Also the generalization to me-
chanical systems with spatial domains greater than one is not so
straightforward when the strains are used as state variables, since
compatibility conditions arise; see Schöberl and Siuka (2013a) for
a discussion.

This paper is organized as follows. In Section 2 some notation
is presented and the geometric objects that play a fundamental
role in the paper are introduced. Section 3 deals with the
representation of port-Hamiltonian systems described by pdes,
where the novelty in this paper is the fact that differential
operators are considered, which is not the case in Ennsbrunner and
Schlacher (2005) and Schlacher (2008). Two specific applications,
the Timoshenko beam including damping effects and a simple
model of magnetohydrodynamics are analyzed in Section 4 to
demonstrate how the introduced differential operators have an
impact on the power balance in practice. A preliminary version of
the material has been presented in Schöberl and Siuka (2012).

2. Notation and preliminaries

In this paper we will apply differential geometric methods and
we will use a notation that is similar to the one in Giachetta,
Mangiarotti, and Sardanashvily (1997). To keep the formulas short
and readable we will use tensor notation and especially Einstein’s
convention on sums. We use the standard symbol ⊗ for the tensor
product, ∧ denotes the exterior product (wedge product), d is
the exterior derivative, and ⌋ is the natural contraction between
tensor fields. By ∂Bα aremeant the partial derivativeswith respect to
coordinates with the indices αB . Furthermore, C∞(·) denotes the set
of the smooth functions on the correspondingmanifold. Moreover,
we will not indicate the range of the used indices when they are
clear from the context. Additionally, pull-back bundles (see e.g.
Giachetta et al., 1997) are not indicated when they follow from the
context to avoid exaggerated notation.

In the following sections we will consider bundle structures
in order to be able to separate dependent and independent
coordinates. Let us consider the bundle X → D with coordinates
(XA, xα) for X and (XA) for D where x are the dependent and
X the independent coordinates. The first jet manifold J1(X) can
be introduced possessing the coordinates (XA, xα, xαA), where the
capital Latin indices A, B, . . . are used for the base manifold D
(independent coordinates) and xαA denote derivative coordinates
of first order (derivatives of the dependent coordinates with
respect to the independent ones), and ∂A = ∂/∂XA, ∂α =

∂/∂xα, ∂Aα = ∂/∂xαA is met. Higher-order jet manifolds can be
introduced accordingly by considering the space Jr(X) equipped

with coordinates (XA, xα
J̄
) where J̄ is an unordered multi-index

(modulo permutations) with 0 ≤ #J̄ ≤ r where #J̄ characterizes
the number of derivations; see Giachetta et al. (1997).

The jet structure induces the so-called total derivative dA =

∂A + xα
J̄A
∂ J̄α, #J̄ ≥ 0, e.g. in the case where it acts on elements living

in J1(X)we obtain dA = ∂A + xαA∂α + xαAB∂
B
α . We will treat the so-

called densities in the sequel (a quantity that can be integrated),
where we pay special attendance to densities of the form F = FΩ
with F ∈ C∞(J1(X)) where Ω denotes the volume element on
the manifold D , i.e. Ω = dX1

∧ · · · ∧ dXd with dim(D) = d and
ΩA = ∂A⌋Ω (the boundary volume form). We restrict ourselves to
first order densities, i.e. F ∈ C∞(J1(X)) is met and additionally
we denote by F =


D

F the integrated quantity, where of course
the map x = Φ(X) leading to xA = ∂AΦ(X) has to be plugged in to
be able to evaluate the integral properly.

Based on the bundle structureX → D let us introduce the ver-
tical tangent bundle V(X), as well as the tensor bundle Wd

1 (X) =

T ∗(X)∧ (
d
∧ T ∗(D)), see also Giachetta et al. (1997), with a typical

element ω = ωαdxα ∧ Ω for Wd
1 (X) and a typical element v =

vα∂α for V(X), where the functions ωα may depend on derivative
coordinates. Furthermore, when vα depend on derivative coordi-
nates we call v a generalized vertical vector field; see Olver (1986).

An important object is the horizontal exterior derivative dh,
which meets dh(φ) = dXA

∧ dA(φ) acting on a differential form
φ, where dA(φ) denotes the Lie-derivative of φ with respect to dA
(see the appendix for more details concerning the relationship of
d and dh and the Stokes theorem in that context). Furthermore, we
will treat linear differential operators (of order k) that are of the
following formD : Wd

1 (X) → V(X), that map an elementWd
1 (X)

of jet-order p to an elementV(X) of jet-order p+k. In coordinates
we have

D(η) = DαβK̄dK̄ (ηα)∂β

with #K̄ ≤ k (unordered multi-index K̄ ) and with η ∈ Wd
1 (X),

where we use the compact notation dL̄ = dlr ◦ · · · ◦ dl1 for #L̄ = r
with li = {1, . . . , d}. The (formally) adjoint operator D∗ follows by
integration by parts and fulfills the condition

D(η)⌋η̄ = D∗(η̄)⌋η + dh(d) (1)

with η, η̄ ∈ Wd
1 (X), where d is a bilinear expression involving the

total derivatives up to order k − 1; see Olver (1986).

Remark 1. The differential operator D is called (formally) self-
adjoint if D∗

= D and it is called (formally) skew-adjoint if D∗
=

−D; see Olver (1986). It should be noted that it is not required
that the boundary termvanishes in (1). Thiswill be important since
non-zero energy flow through the boundary can take place in our
setting. This is similar to the main idea used in the Stokes–Dirac
approach as in Macchelli and Melchiorri (2004b), Macchelli et al.
(2004a,b), Maschke and van der Schaft (2005) and van der Schaft
and Maschke (2002).

3. System representation

In this section we will introduce port-Hamiltonian systems
described by pdes based on a power balance relation. This means
that the system is introduced in such away that the power balance
relation togetherwith the structure of the equations represents the
physical process. Beforeweare able to introduce the corresponding
system representations we need to introduce some geometric
concepts which will be exploited later on with respect to the
derivation of the power balance relation.
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