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a b s t r a c t

In this paper, the problems of stability for switched positive linear systems (SPLSs) under arbitrary
switching are investigated in a continuous-time context. The so-called ‘‘copositive polynomial Lyapunov
function’’ (CPLF) giving a generalization of copositive types of Lyapunov function is first proposed, which
is formulated in a higher order form of the positive states of the underlying systems. It is illustrated in this
paper that some classical types of Lyapunov functions can be seen as special cases of the proposed CPLF.
Then, newstability conditions are developedby thenewLyapunov function approach. It is also proved that
the conservativeness of the obtained criteria canbe further reduced as the degree of the Lyapunov function
increases. A numerical example is given to demonstrate the effectiveness and less conservativeness of the
developed techniques.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are hybrid systems with both continuous
dynamics and discrete events (Sun, Liu, Rees, & Wang, 2008).
During the past decades, considerable attention has been devoted
to the investigation of such systems due to the fact that switched
systems provide a unified framework for mathematical modeling
of many practical systems (Sun & Ge, 2004).

Among these studies, stability analysis is a very crucial and fun-
damental problem in the area of switched systems (Vu, Chatter-
jee, & Liberzon, 2007; Vu & Liberzon, 2008; Zhao, Liu, & Zhang,
2013; Zhao, Zhang, Shi, & Liu, 2012). When the switching mecha-
nism is unknown and unmeasurable, the stability issue is thus the
guaranteed stability under arbitrary switching (Sun, Zhao, & Hill,
2006; Zhao & Hill, 2008). For switched linear systems under arbi-
trary switching, it has been proved that global asymptotic stabil-
ity is equivalent to the existence of a common Lyapunov function
that is positive definite, smooth, and strictly decreasing along any
state trajectory of each subsystem. Due to this important relation-
ship between asymptotic stability and common Lyapunov func-
tions, a number of efforts have been paid to find various common
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Lyapunov functions for different classes of switched linear sys-
tems, e.g. common quadratic Lyapunov functions (Wang, Wang, &
Shi, 2009a,b) and recently common homogeneous polynomial Lya-
punov functions (Chesi, Colaneri, Geromel, Middleton, & Shorten,
2012).

As a special class of switched linear systems, switched positive
linear systems (SPLSs) have also been extensively studied due to
their numerous applications inmany fields such as communication
systems, networks employing transmission control protocols and
formation flying, etc. Readers may refer to Hernandez-Vargas,
Colaneri, Middleton, and Blanchini (2011) and the references
therein for other applications of such systems. Different from
general switched systems, the states of SPLS are always confined
to the positive orthant, rather than the whole state space. The
positivity will bring some interesting and special properties to
SPLSs (Liu, 2009). For example, time delay may lead to instability
of a switched system, but for SPLSs, the stability is independent of
delays (Liu & Dang, 2011; Liu, Yu, & Wang, 2010). Therefore, many
challenging control issues have arisen for SPLSs, attracting much
attention, particularly the stability analysis.

In stability analysis of SPLSs under arbitrary switching, it should
be pointed out that, those common Lyapunov function approaches
developed for general switched systems are still applicable for
SPLSs (Alonso & Rocha, 2010). However, the resulting stability
conditions are generally conservative for SPLSs, since the states of
a SPLS are naturally positive (at least nonnegative). On the other
hand, the copositive Lyapunov function approach has recently

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.11.039

http://dx.doi.org/10.1016/j.automatica.2013.11.039
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.11.039&domain=pdf
mailto:xdzhaohit@gmail.com
mailto:xingwenliu@gmail.com
mailto:shen.yin2011@googlemail.com
mailto:lihongyi2009@gmail.com
http://dx.doi.org/10.1016/j.automatica.2013.11.039


X. Zhao et al. / Automatica 50 (2014) 614–621 615

been proposed for SPLSs. In particular, the so-called common
linear copositive Lyapunov function (CLCLF) approach has been
shown to be quite efficient in stability analysis of SPLSs subject
to arbitrary switching. It is conjectured by the authors of Mason
and Shorten (2003) that the existence of a CLCLF for a given
SPLS can be determined by testing the Hurwitz-stability of an
associated convex set of matrices. Then, in Gurvits, Shorten, and
Mason (2007), the conjecture is verified to be true in some specified
cases, but false in general. In recent years, the existence of a
CLCLF has been independently investigated in detail (Fornasini
& Valcher, 2010; Knorn, Mason, & Shorten, 2009; Mason &
Shorten, 2007a,b), leading to deeper insights into the properties
the subsystems family must satisfy. Recently, the concept of the
common quadratic copositive Lyapunov function (CQCLF) has been
proposed in Fornasini and Valcher (2010) for SPLSs. However, how
to numerically construct a CQCLF is still an open and interesting
problem. Meanwhile, some other control synthesis results based
on copositive Lyapunov function approaches, such as stabilization,
H∞ control and filtering, etc., have also been reported (Li, Lam, &
Shu, 2010; Li, Lam, Wang, & Date, 2011; Shu, Lam, Gao, Du, & Wu,
2008).

However, it is noted that the copositive Lyapunov functions
in the literature are commonly formulated in positive states of
degree-1. From a mathematical point, finding a low order polyno-
mial to approximate the desired Lyapunov function unavoidably
leads to some conservativeness over higher order polynomials,
which has already been verified to be true for general switched
systems (Chesi et al., 2012). Here, an interesting question naturally
arises: Can some existing results be improved by generalizing the
CLCLF to some higher order copositive Lyapunov functions?

In summary, there are still many open problems and questions
relating to the stability of SPLSs, some of which will be discussed
towards the end of this paper.

This paper aims to explore less conservative stability conditions
for switched positive linear systems under arbitrary switching.
One of the major contributions of this paper is to generalize the
common copositive Lyapunov function to the so-called copositive
polynomial Lyapunov function (CPLF) with any specified order.
Based on the new type of Lyapunov function, relaxed stability
conditions are also derived and formulated in terms of a set of
linear matrix inequalities. The remainder of the paper is organized
as follows. Section 2 reviews necessary definitions and lemmas for
SPLSs. In Section 3, the CPLF is first proposed, and it will be shown
that a CPLF is less conservative than other available Lyapunov
functions for SPLSs. Sufficient conditions for the existence of a CPLF
ensuring the stability of a given SPLS will be derived, upon which,
some corollaries are also given. Then, the relationships among
these conditions are discussed aswell. A numerical example is used
in Section 4 to demonstrate the validity and less conservativeness
of the obtained results. Finally, conclusions are addressed in
Section 5.
Notations: In this paper, the notations used are fairly standard.
x ≻ 0 (or x ≽ 0) means that x is positive (or nonnegative); the
notation P > 0 (≥ 0)means that P is a real symmetric and positive
definite (semi-positive definite)matrix;R, Rn andRn×n denote the
field of real numbers, n-dimensional Euclidean space and the space
of n × n matrices with real entries, respectively, and Rn

0 denotes
Rn

\ {0n
}; Rn

+
stands for the nonnegative orthant in Rn

0; N+ stands
for the set of positive integers; In is the identity matrix of order n;
Im ∈ R(n−m+1)×n is a matrix composed of the rowsm,m + 1, . . . ,
n of In; x[m]

:= [xm1 xm2 · · · xmn ]
T
;

√
x = x[

1
2 ]

;for vectors x, y,
[x; y] = [xT , yT ]T ; x{m}

:= [x[m]
; xm−1

1 (I2x); . . . ; x1(I2x){m−1}
; . . . ;

xm−1
n−1 (Inx); . . . ; xn−1(Inx){m−1}

] is a base vector containing all ho-
mogeneous monomials of degree m in x; λ(A) are the eigenvalues
of A; A ≡ [aij]n×n, where aij is the ith line and jth column entry

of A; ϑ(n,m) ≡ (n + m − 1)!/((n − 1)!m!); A ⊗ B refers to the

Kronecker product of matrices A and B; x⊗m
=

m  
x ⊗ x ⊗ · · · ⊗ x

denotes the mth Kronecker power in x; in addition κij represents
the Kronecker delta function.

2. Problem statements and preliminaries

Consider the following switched linear system comprising a set
of positive subsystems:

ẋ(t) = Aσ(t)x(t), x(0) ≽ 0 (1)

where x(t) ∈ Rn is the state vector, σ(t) is an arbitrary switching
signal, taking its values in the finite set S = {1, . . . ,M} , andM
is the number of subsystems. When σ(t) = p ∈ S, we say the
pth subsystem of (1) is activated. Moreover, the system matrix
Ap, ∀p ∈ S is a Metzler matrix that is defined below.

Definition 1 (Knorn et al., 2009). If all the off-diagonal entries of
the matrix A are nonnegative, then, A is called a Metzler matrix.

Definition 2 (Fornasini & Valcher, 2010). A linear system ẋ(t) =

Ax(t) is said to be positive if x(0) ∈ Rn
+
implies that x(t) ∈ Rn

+
for

all t ≥ 0.

Lemma 1 (Fornasini & Valcher, 2010). A linear system ẋ(t) = Ax(t)
is positive if and only if A is a Metzler matrix.

Remark 1. Suppose that Ap, ∀p ∈ S, are Metzler matrices. We can
see from Lemma 1 that all subsystems of system (1) are positive.
This togetherwith Definition 2 implies that the states of system (1)
with nonnegative initial conditionswill stay in the positive orthant
during the running time of the first operation mode. Therefore,
the initial conditions of the next activated subsystem are also
nonnegative, which in turnmeans the state trajectory of system (1)
under arbitrary switching will always stay in the positive orthant.
In the literature, system (1) is commonly termed as a switched
positive linear system (SPLS).

On the basis of Lyapunov stability theory, this paper aims to
explore less conservative stability conditions for SPLS (1). Before
ending this section, the following preliminaries are given, which
will be used to develop our main results later.

Lemma 2 (LaSalle, 1961). Let x∗
= 0 be an equilibrium of the au-

tonomous system ẋ(t) = f (x(t)), if V (x(t)) : Rn
→ R is a continu-

ous scalar function satisfying the following conditions:

(I) V (0) = 0;
(II) V (x(t)) is a continuously differentiable function in Ω;
(III) V (x(t)) > 0, ∀x(t) ∈ Ω \ {0};
(IV) V̇ (x(t)) < 0, ∀x(t) ∈ Ω \ {0};

where Ω represents a state region, then V (x(t)) is a Lyapunov
function to prove asymptotic stability of the underlying system in Ω .

Remark 2. For SPLS (1), the state region Ω to be considered is the
positive orthant. Also note from Remark 1 that the consideredΩ is
positively invariant when Ap, ∀p ∈ S, are Metzler matrices.

Lemma 3 (Fornasini & Valcher, 2010). The linear function V (x) =

xTv defines a common linear copositive Lyapunov function (CLCLF) for
SPLS (1), if and only if the vector v satisfies:

(I) v ≻ 0;
(II) AT

pv ≺ 0, ∀p ∈ S.
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