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a b s t r a c t

We consider the problem of achieving average consensus in the minimum number of linear iterations on
a fixed, undirected graph. We are motivated by the task of deriving lower bounds for consensus protocols
and by the so-called ‘‘definitive consensus conjecture’’, which states that for an undirected connected
graph G with diameter D there exist Dmatrices whose nonzero-pattern complies with the edges in G and
whose product equals the all-ones matrix. Our first result is a counterexample to the definitive consensus
conjecture, which is the first improvement of the diameter lower bound for linear consensus protocols.
We then provide some algebraic conditions under which this conjecture holds, which we use to establish
that all distance-regular graphs satisfy the definitive consensus conjecture.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus algorithms are a class of iterative update schemes
commonly used as building blocks for distributed estimation and
control protocols. The progress made in recent years in analyzing
and designing consensus algorithms has led to advances in a num-
ber of fields, for example, distributed estimation and inference in
sensor networks (Carli, Chiuso, Schenato, & Zampieri, 2008; Xiao,
Boyd, & Kim, 2007; Xiao, Boyd, & Lall, 2005), distributed optimiza-
tion (Nedic & Ozdaglar, 2009), and distributed machine learning
(Ang, Gopalkrishnan, Hoi, & Ng, 2008). These are among the many
subjects that have benefited from the use of consensus algorithms.

One of the available methods to design an average consensus
algorithm is to use constant update weights satisfying some
conditions for convergence (as can be found in Blondel, Hendrickx,
Olshevsky, & Tsitsiklis, 2005 for instance). However, the associated
rate of convergence might be a limiting factor, and this has
spurred a literature dedicated to optimizing the speed of consensus
algorithms. For example, in the discrete-time case in which we are
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interested, recent work has studied optimizing the spectral gap of
the stochastic update matrix (Boyd, Diaconis, & Xiao, 2004; Xiao &
Boyd, 2004) or choosing an optimal network structure (Delvenne,
Carli, & Zampieri, 2007).

Other recent work has focused on achieving average consensus
in finite time. For instance, Ghosh and Lee (2012) shows that
if the interaction network is given by a fixed undirected graph
(about which the agents initially only know their neighbors and
the number of nodes) and if the agents have total recall of the
previously sent and received information, then a control scheme
that is optimal in time can be found. Again, on fixed undirected
networks, it is shown in Sundaram and Hadjicostis (2008) that
any node can compute any function of the initial values after
using almost any constant weights for a certain finite number of
iterations given that the agents have either the memory of their
past values or one dedicated register of memory, and given that
some parameters are set at design time based on the network
and the weights to be used. Moreover, Sundaram and Hadjicostis
(2008) presents a decentralized way of computing the required
parameters if the nodes have sufficient memory, the computing
power to check rank conditions on matrices, and know a bound
on the total number of nodes. These results are further improved
and extended in Yuan, Stan, Shi, Barahona, and Goncalves (2013)
by providing a decentralized procedure using fewer iterations and
not requiring the agents to know a bound on the number of agents.
However, this last fact implies that the procedure works only
for almost all initial conditions. Finally, Kibangou and Commault
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(2012) also treats the problem of computing the consensus value
after a finite number of constant-weight steps when the agents
have memory and computing power. It treats this problem in
the context of decentralized Laplacian eigenvalues estimation and
topology identification.

In this paper, we study finite-time consensus in the setting
where nodes memorize only their current state and, as before, up-
date it as a linear function of their state and the states of their
neighbors, but the arbitrary time-varying weights can be chosen
at the time of design. Then, the problem is to pick update matrices
at design time, so that average consensus is achieved in finite time.
This setting has been investigated in Ko (2010) with the added re-
striction to use left-stochastic matrices corresponding to different
types of consensus algorithms, e.g., various forms of pairwise ex-
changes such as gossip matrices. Algorithms and asymptotic re-
sults, mainly based on using spanning trees, are proposed there.
The samequestion is treated inGeorgopoulos (2011)when thema-
trices do not have to be left-stochastic nor have to correspond to a
known consensus algorithm. It introduces a Gather and Distribute
scheme for trees (Georgopoulos, 2011, Section 4.2), which is also
similar to Ko (2010, Algorithm 3.3) or the ConvergeCast algorithm,
that shows how to reach finite-time consensus on any tree or on
any graph based on a spanning tree. Finally, Georgopoulos (2011)
conjectures that, on any connected undirected graph, it is possible
to design consensus schemes which take only as long as the diam-
eter of the underlying graph to achieve average consensus.

The conjecture just cited is the starting point of our develop-
ments. That is, we are concerned with picking update matrices, at
design time, so that average consensus is achieved in the fastest
possible time. Furthermore, we are concerned with deriving lower
bounds on such consensus schemes.

After posing the problem and presenting previous results in
Section 2, we answer the conjecturewith a counterexample in Sec-
tion 3. This proves that, on some graphs, consensus may not be
achieved by linear consensus protocols as fast as the diameter of
the graph. We note that this is the first time the diameter lower
bound on linear consensus protocols has been improved for any
graph.

In Section 4, we provide some algebraic conditions underwhich
the definitive consensus conjecture holds and show that these con-
ditions are easily met on all distance-regular graphs. In particular,
this implies that graphs which possess a lot of symmetry automat-
ically satisfy the conjecture; we will make this statement precise
in that section.

Finally, in Section 5, we show how our conditions can be used
to find a number (possibly larger than the diameter) of matrices
compliant with the graph that lead to average consensus and
we introduce the notion of consensus number of a graph. Our
results in Section 5 are related to those obtained independently
in Kibangou (2011, 2012). In these references the author does not
try to minimize the running time of the consensus protocols, but
provides a general method for obtaining consensus in finite time.
This method can be seen as a particular case of Corollary 9 in the
present paper and is further discussed at that point.

2. Problem setting and previous results

2.1. Problem setting

For ease of exposition, we consider only undirected graphs;
when some results can be easily extended to digraphs, we explic-
itly mention it.

Given a connected graph G = (V, E), we define the distance,
δ(i, j), separating two nodes i, j ∈ V as the number of edges
in a shortest-path between i and j. Following this definition, the
diameter, D(G), of a graph corresponds to the maximum distance

between two nodes, i.e., D(G) = maxi,j∈V δ(i, j). Another linked
parameter is the eccentricity, ϵ(i), of a node i. This is the maximum
distance separating i from another node, i.e., ϵ(i) = maxj∈V δ(i, j).
The radius R(G) of a graph is the minimum eccentricity over all
nodes, i.e., R(G) = mini∈V ϵ(i) = mini∈V


maxj∈V δ(i, j)


. Finally,

a node is called central if its eccentricity equals the radius of the
graph. More details on these notions can be found in West (2000).

Our setting is that of a fixed interaction network encoded by
an undirected graph G = (V, E). Agents are allowed to store only
their current state and to synchronously update it to a linear com-
bination of their state and the states of their neighbors. Hence, if
x(t)
i denotes the state of agent i at time t and Ni ⊂ V denotes the
set of agentswithwhich i can communicate, then the updated state
of agent i is x(t+1)

i = a(t+1)
ii x(t)

i +


j∈Ni
a(t+1)
ij x(t)

j for some choice

of weights a(t)
ij . More compactly, a synchronous linear update can

be written as x(t+1)
= A(t+1)x(t), where the states of the agents at

time t are in the column vector x(t) and the weights a(t+1)
ij are the

entries of A(t+1). The matrices A(t) are required to comply with the
underlying graph G = (V, E) in the following sense.

Definition 1. Given a graph G = (V, E) on N nodes, we define
the set of matrices that comply with G as M(G) =


A = [aij] ∈

RN×N
| i ≠ j and (i, j) ∉ E ⇒ aij = 0


.

We say that a network of agents has reached average consensus
at time t∗ if the state of each agent is equal to the average of the
initial states, i.e., if x(t∗)

= ( 1
N 1

Tx(0))1 = x(0)1 with 1 the column
vector of ones. This is the case for any initial vector x(0) if and only
if A(t∗)

· · · A(1)
=

1
N 11

T .
In Sections 3 and 4 we answer and analyze the following

conjecture.

Conjecture 1 (Definitive Consensus Conjecture (Georgopoulos,
2011)). For any connected graph G on N vertices, there exist D(G)
matrices A(t) that comply with the graph and are such that

A(D(G))A(D(G)−1)
· · · A(1)

=
1
N
11T , (1)

so that A(D(G))A(D(G)−1) · · · A(1)x(0)
= x(0)1.

In other words, the conjecture states that it is always possible to
reach average consensus with linear updates in only D(G) steps.

We remark that the definitive consensus conjecture may be
viewed as a statement on the feasibility of certain polynomial
equalities. Indeed, developing Eq. (1) leads to a system of N2

polynomial equations in the D(G)(N + 2|E |) weights. For instance,
let us consider a simple graph of diameter 2, such as P3 pictured on
Fig. 1. In P3 there is no link between nodes 1 and 3, hence a(t)

13 and
a(t)
31 must be zero. Thus, we have the liberty to choose the other 14

nonzero entries in order to fulfil
a(2)
11 a(2)

12 0

a(2)
21 a(2)

22 a(2)
23

0 a(2)
32 a(2)

33



a(1)
11 a(1)

12 0

a(1)
21 a(1)

22 a(1)
23

0 a(1)
32 a(1)

33

 =
1
3

1 1 1
1 1 1
1 1 1


.

Developing the product on the left-hand side in this last equation
yields a system of 9 polynomial equations in the 14weights. In this
system, the monomials in the polynomial equation of an entry ij
correspond to all the walks of length D(G) from j to i.
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