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a b s t r a c t

In this paper, we propose deep transfer learning for classification of Gaussian networks with
time-delayed regulations. To ensure robust signaling, most real world problems from
related domains have inherent alternate pathways that can be learned incrementally from a
stable form of the baseline. In this paper, we leverage on this characteristic to address the
challenges of complexity and scalability. The key idea is to learn high dimensional network
motifs from low dimensional forms through a process of transfer learning. In contrast to
previous work, we facilitate positive transfer by introducing a triangular inequality
constraint, which provides a measure for the feasibility of mapping between different
motif manifolds. Network motifs from different classes of Gaussian networks are used
collectively to pre-train a deep neural network governed by a Lyapunov stability condition.
The proposed framework is validated on time series data sampled from synthetic Gaussian
networks and applied to a real world dataset for the classification of basketball games based
on skill level. We observe an improvement in the range of [15–25]% in accuracy and a saving
in the range of [25–600]% in computational cost on synthetic as well as realistic networks
with time-delays when compared to existing state-of-the-art approaches. In addition, new
insights into meaningful offensive formations in the Basketball games can be derived from
the deep network.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time-delayed Gaussian networks (GNs) can be derived
by estimating the output measurements of each variable
using a multivariate Gaussian function over the available
measurements of input parent variables, such that for all
admissible time-delays, the error of estimation is minimal
[1,2]. The edges in such a network represent causal interac-
tions in dynamic systems and provide a basis for signal
transduction in pathways. Signal transduction is transient;
hence, the study on dynamics of the transduction is essential.

The classical time series models used ordinary differential
equations to capture complex regulatory dynamics [3–5].
However, they do not work well on multivariate data with
variable-order delays. In [6], the authors introduced stochastic
models; these assume an underlying hidden state of a
dynamic system evolving over time. The earliest stochastic
networks were Boolean, which were built using mutual
information among discrete nodes [7,8]. In order to predict
the causality in networks with Gaussian or mixed nodes,
Bayesian networks have been proposed [9–12].

State-of-the-art Bayesian network is a directed acyclic
graph where variables are present at the nodes and edges
represent causal interactions among them. For each node
and parent set in the graph, conditional probabilities are
computed from the time series data. The variable-order
Bayesian network is attained by learning transition
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networks between three or more structures. Now, the
expression of a node depends on the expression of parents
from ðr41Þ previous time points [13]. In [14], general
tensor discriminant analysis was used to collectively model
such higher-order networks during classification.

Accurately predicting joint multivariate probabilities
with Gaussian nodes requires a lot of computational effort.
For very large networks, it is customary to limit the
connectivity of each node using some geometric prior
[15]. This is unrealistic in practice since most real world
networks require hub nodes with very high connectivity,
so as to ensure robust signaling [4]. Lastly, when modeling
networks with variable delays, robustness of the predic-
tion has been established to be heavily reliant on the
quality of time samples and prior knowledge. However,
collecting data from real world networks is often plagued
with practical difficulties and high experimental costs.

Further, the distributed nature of most real world
networks manifests itself as intense crosstalk between
pathways. In particular, states of Gaussian networks are
often presumed to be stable, meaning that slight changes
in the state of a few parents does not change the expres-
sion state of the child node. This relates to the natural
phenomenon of real world complex networks, where a
system retains functionality in spite of turbulences by
maintaining redundancy. Hence, most real world problems
have inherent alternate pathways that can be learned
incrementally from a stable form of the baseline. In this
paper, we leverage on this characteristic and look at
transfer learning to address the challenges of complexity
and scalability.

1.1. Related work

Domain adaptation aims to generalize one or more source
class network(s) that are easier to learn, to augment the
target network, for which data is scarce. Since data in
networks of different classes are distributed differently,
previous authors have collectively used data from the
source(s) and the target class networks to learn shared
feature representations [16]. In the case of networks, we
can consider motifs, which are recurrent, or statistically
significant sub-graphs shared across different classes. Deep
neural networks are ideal for learning a set of shared motifs

from different classes of Gaussian networks [17–19]. How-
ever, simply learning different class networks together can
be detrimental when the networks are unrelated.

Transfer learning has been previously used in the
Bayesian frameworks to estimate the prior covariance
matrix of the target network by simply averaging the
covariance matrices of previously determined structures
in similar classes of networks [20,21]. In their approach,
the history of past maximum likelihood (ML) estimates for
motifs can be reused by transferring to suitable new
structures of higher dimensions. However, the discrimina-
tive information in the covariance matrices is often lost
due to undersampling of data. Previously, the use of
normalized divergences was shown to preserve small
differences between classes [22]. Transfer may be trans-
ductive which means across different dynamic systems or
inductive which means transfer among related structures
in the same network. The objective function tries to
minimize the loss in prediction accuracy due to the
transfer [23]. For example, in [24], labeled and unlabeled
samples are combined with a trade-off parameter.

In document classification, instead of assuming that all
word probabilities are independent in the target class,
transductive transfer learning was used to estimate the
dependencies between words using other source classes
with known labels. Since, the number of possible covar-
iance estimates would increase exponentially with size of
the vocabulary, in [20] the authors learn the covariance for
only a subset of words from the source classes and
combine it with the rest of the vocabulary under a semi-
definite constraint. However, their approach will not be
able to capture the underlying structure due to higher-
order dependencies among groups of words that can occur
at variable positions in a document. It will also not be able
to transfer effectively among words that are synonyms and
used alternatively across documents. In [25] the authors
tried to address this issue through adaptive learning of
higher-order dependencies in the neighbourhood of a
word. Similarly, to account for lack of data in click-based
methods for image ranking in web search, we can predict
clicks for new images using click data from associated
images. In [26], the authors achieved this through learning
of manifolds for each image feature separately using a
group of weights and hyper-graphs to model higher-order

Nomenclature

nd number of domains or classes
xiðτÞ expression level of node i at time instant τ
yðτÞ class label for sample τ
β regression co-efficient matrix
ai parent set of a node i
θi;ai

parameters for node i in the Bayesian network
given parent set ai

N number of variables in the system
Σ covariance matrix of Gaussian node
μ mean vector of Gaussian nodes
vi node i in the visible layer

hj neuron j in the hidden layer
T number of data samples
r the upper-bound of delay
Xs time series data for class s
l index for a hidden layer
f l activation function of the hidden layer l
E global energy function for a DBN
Wl weights of the hidden layer l
α learning rate of a DBN
λ transformation factor for a motif
Δϵ change in classification precision error
S Gaussian network
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