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a b s t r a c t

It is well-known that the Decision Feedback Equalizer (DFE) outperforms the Linear Equal-
izer (LE) for highly dispersive channels. For time-varying channels, adaptive equalizers are
commonly designed based on the Least Mean Square (LMS) algorithm which, unfortu-
nately, has the limitation of slow convergence specially in channels having large eigen-
value spread. The eigenvalue problem becomes even more pronounced in Multiple-Input
Multiple-Output (MIMO) channels. Particle Swarm Optimization (PSO) enjoys fast con-
vergence and, therefore, its application to the DFE merits investigation. In this paper, we
show that a PSO-DFE with a variable constriction factor is superior to the LMS/RLS-based
DFE (LMS/RLS-DFE) and PSO-based LE (PSO-LE), especially on channels with large
eigenvalue spread. We also propose a hybrid PSO–LMS-DFE algorithm, and modify it to
deal with complex-valued data. The PSO–LMS-DFE not only outperforms the PSO-DFE in
terms of performance but its complexity is also low. To further reduce its complexity, a
fast PSO–LMS-DFE algorithm is introduced.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The decision feedback equalizer (DFE) [1] is an effective
Inter-symbol Interference (ISI) mitigation technique and can
significantly outperform the linear equalizer (LE) on highly
dispersive channels. Adaptive equalization is attractive for
time-varying channels, and for this purpose, adaptive algo-
rithms, e.g., the Least Mean Square (LMS) and the Recursive
Least Squares (RLS) [2], are widely used. Recently, heuristic
techniques applied to equalization/estimation problems, in
particular the Particle Swarm Optimization (PSO) technique,
showed significant improvement over conventional algo-
rithms [3–6]. It was shown in [6] that the application of
PSO to an adaptive linear equalizer provides fast convergence

compared to its LMS-based counterpart. To further explore
its equalization capabilities, this work investigates the effec-
tiveness of the PSO when applied to a DFE structure.

The PSO is a robust algorithm with fast convergence.
It is simple, very easy to code, and has low memory
requirements. It can be used to solve multi-modal, non-
differential and nonlinear problems [7]. It uses position
and velocity update equations to search for the global
minimum. Each particle uses its own information and its
neighbors information to adjust its position within the
search space. In addition, the PSO works based on coop-
eration among the particles as opposed to the other
Evolutionary Algorithms (EA). The PSO has demonstrated
its distinguished performance in many engineering appli-
cations. To mention a few of its recent applications, it has
been used in image processing [8], channel prediction [9],
and nonlinear active noise control systems [10].

The PSO is used to optimize real- and continuous-
valued functions in an l-dimensional space. The particles
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constitute the swarm, also known as population, and move
in a predefined search space. The position of each particle
within the search space represents a possible solution to
the problem. Here, in the case of adaptive equalization, the
position represents the weights of the equalizer.

Despite its advantages, the PSO is vulnerable to local
minima, i.e., the particles become stagnant around the
global minima and may not be able to reach the global
minimum [11]. To deal with this issue, we have introduced
a hybrid of PSO and LMS algorithms, which not only solves
the problem of particle stagnancy but also reduces the
number of computations required in the PSO. Another
disadvantage of PSO is that it assumes real-valued data.
In [6], the authors use a BPSK signal with a real-valued
channel impulse response. However, in reality, we have to
deal with complex numbers for pass-band transmission
then the tap weights of the equalizer become complex.
To solve this issue, we have modified the PSO algorithm to
handle the complex case without increasing its complex-
ity. To further reduce the complexity, we have introduced
the fast PSO–LMS-DFE. Since the major complexity factor
in the PSO is the convolution operation required to find
the equalizer output, the PSO–LMS-DFE performs this
operation in the frequency-domain using the FFT to save
on computations.

Here, this work is extended to Multiple-Input Multiple-
Output (MIMO) scenario. Due to its high computational
complexity, the most challenging task in designing the
MIMO receiver is its corresponding MIMO channel equal-
izer. A MIMO equalizer has to deal with the inter-symbol
and the inter-stream interference. Several works proposed
different methods for adaptive MIMO DFE. Among them,
the Vertical Bell Labs layered space–time (V-BLAST) archi-
tecture [12] is one of the promising methods for MIMO
equalization. Computationally efficient V-BLAST techni-
ques have also been proposed in [13–15] assuming a
known channel. Its application to time varying channels
is difficult due to frequent estimation of the MIMO
channel. An efficient adaptive MIMO equalizer based on
V-BLAST and generalized DFE [16] has been presented
in [17], where are symbol detection order as well as the
equalizer taps is updated recursively; however, this struc-
ture suffers from numeric instability. To address this
problem, a technique based on square-root factorization
of the equalizer input correlation matrix was proposed
in [18]. However, unlike the application of MIMO DFE to
time-invariant channels, the application of MIMO DFE to
time-varying channels still requires excessive computa-
tions for the estimation of the parameters. Another chal-
lenging problem in these techniques is that substantial
training is required when the equalizer length becomes
large (as in [19]) and therefore a large number of symbols
are needed before the algorithm converges. Algorithms
based on reduced rank equalization [20] are less complex
and require less training symbols as compared to full rank
equalization, while requiring matrix inversion at each
iteration. To overcome this problem, in [21,22] the covar-
iance matrix is estimated iteratively and hence the matrix
inversion operation is avoided and therefore have a
moderate complexity. However, all of the above men-
tioned techniques use the RLS algorithm which is often

complex to implement and prone to instability in a real
time environment. Therefore, PSO-based algorithms can
be a substitute to the RLS-based algorithms with moderate
complexity and guaranteed stability as they do not have to
calculate the inverse of the autocorrelation matrix of the
input signal. Moreover, some algorithms may require more
than 150 symbols for the training phase which is not
suitable for frame-based applications, e.g., IEEE 802.11p,
where the frame contains less than 150 Orthogonal Fre-
quency Division Multiplexing (OFDM) symbols.

This work reports a detailed analysis for the adjustment
of the PSO parameters to ensure the best performance. The
superiority of the PSO algorithms is tested on channels
with different eigenvalue spreads specifically in MIMO
channels where the performance of the LMS/RLS-DFE can
be very bad due to the severe eigenvalue spread problem.
Our results demonstrate the performance gain of the
proposed algorithms over conventional algorithms.

The paper is organized as follows. In Section 2, we
revise the basic PSO algorithm and its variants. Problem
formulations for SISO and MIMO systems are given in
Section 3. Section 4 introduces the PSO–LMS algorithm
and in Section 5, PSO–LMS is modified to deal with
complex-valued data. In Section 6, simulation results are
shown to verify the benefits of proposed algorithms. The
complexity of PSO algorithms is discussed in Section 7.
Finally, Section 8 draws the conclusions.

2. The PSO algorithm

2.1. BASIC PSO

Initially, random solutions are assigned to n particles in
a d-dimensional search space. The basic PSO algorithm [7]
consists of the following elements:

Particle position ðpi;kÞ: The particle position is repre-
sented by a real-valued l-dimensional vector which is the
potential solution to the problem at hand. The particle
position is the weight vector of the equalizer in our case.
The position of the ith particle at instant k is denoted by
pi;k ¼ ½pið0Þ; pið1Þ; pið2Þ;…; piðlÞ�, where pi(l) represents the
ith particle position in the lth dimension.

Particle velocity ðvi;kÞ: The velocity is also represented by
a real-valued l-dimensional vector. The velocity of the
ith particle at instant k is given as vi;k ¼ ½við0Þ; við1Þ;
við2Þ;…; viðlÞ�, where vi(l) represents the ith particle velo-
city in the lth dimension.

Inertia weight ðiwÞ: This parameter controls the change
of velocity between successive iterations. It affects the
local and global search capabilities of the particles.

Particle or local best ðpbesti;kÞ: Each particle remembers
its best position pbesti;k. The best position is the one which
results in the minimum (or the maximum depending on
the problem at hand) value of the cost function.

Global best ðgbestkÞ: The best value of all the
pbesti;k; i¼ 1;2;…;n is calculated by comparing the cost
function values associated with them. This is the global
best gbestk of the swarm.

Stopping criteria: The algorithm is terminated when the
global minimum (or maximum) is attained or after reach-
ing a predefined number of iterations.
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