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a b s t r a c t

To solve the problem of attitude synchronization for a group of flexible spacecraft during formation
maneuvers, a distributed attitude cooperative control strategy is investigated in this paper. Based
on the backstepping design and the neighbor-based design rule, a distributed attitude control law
is constructed step by step. Using cascaded systems’ theory and graph theory, it is shown that the
attitude synchronization is achieved asymptotically and the induced vibrations by flexible appendages
are simultaneously suppressed under the proposed control law.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed cooperative control of multi-agent systems has
been attracting a lot of interest in control community recently be-
cause of its many advantages, such as greater efficiency, higher ro-
bustness, and less communication requirement (Hong, Hu, & Gao,
2006; Khoo, Xie, &Man, 2009; Ren & Beard, 2007). As an important
application area of distributed control, the attitude cooperative
control for spacecraft formation has also gained certain progresses.

For a group of rigid spacecraft, in Lawton and Beard (2002),
two kinds of distributed control strategieswere designed such that
the attitude synchronization is achieved under a ring communi-
cation graph. Later, this ring communication topology graph was
relaxed to be a more general case in Ren (2007). When the angu-
lar velocity is unmeasurable, the attitude synchronization control
problem was also investigated in Abdessameud and Tayebi (2009)
and Lawton and Beard (2002). For the attitude cooperative track-
ing control problem with a single leader or multiple leaders, the
distributed cooperative control laws were proposed in Dimarog-
onas, Tsiotras, and Kyriakopoulos (2009) and Wu, Wang, and Poh
(2013). Recently, in order to enhance the convergence rate, pre-
cision, and robustness against disturbances, the finite-time con-
trol technique (Bhat & Bernstein, 2000; Qian & Li, 2005; Shen
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& Xia, 2008) has been employed to design finite-time attitude
synchronization control algorithms (Du & Li, 2011; Li, Du, & Lin,
2011; Meng, Ren, & You, 2010).

Note that all the preceding listed studies on attitude cooperative
control only concentrate on the rigid spacecraft. Nevertheless,with
the development of the space science technology, the structure of
spacecraft will be more complex and usually carry some flexible
appendages, such as solar array, manipulator, etc. Compared with
the rigid spacecraft, the control problem of flexible spacecraft
becomes more complicated since not only the attitude control
but also the vibration induced by the flexible appendages is
required to be handled, where the coupling nonlinearities with
modal variable are the main obstructions. Although for a single
flexible spacecraft, many researchers have developed different
nonlinear control methods, such as Gennaro (2003) and Hu (2010),
to name just a few. However, for the attitude cooperative control
for multiple flexible spacecraft, to the best of our knowledge, there
have been no available results.

In this paper, we focus on solving the problem of attitude
synchronization for a group of flexible spacecraft. Based on the
backstepping design, a distributed attitude cooperative control law
is explicitly constructed in two steps. At the first step, the angular
velocity is regarded as a virtual control input and a neighbor-based
distributed control law is designed, where the modal variables
are first assumed to be measurable. Then to address the problem
of lack of modal variables measurement, the virtual controller is
redesigned together with a modal observer. At the second step, for
the dynamic subsystem, a control law is designed for the control
torque such that the virtual angular velocity can be tracked by the
real velocity. Finally, a rigorous stability analysis for the overall
closed-loop system is given based on cascaded systems’ theory.

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.11.022

http://dx.doi.org/10.1016/j.automatica.2013.11.022
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.11.022&domain=pdf
mailto:haibo.du@hfut.edu.cn
mailto:lsh@seu.edu.cn
http://dx.doi.org/10.1016/j.automatica.2013.11.022


H. Du, S. Li / Automatica 50 (2014) 646–651 647

2. Preliminaries and problem formulation

2.1. Graph theory

Without loss of generality, n flexible spacecraft will be consid-
ered in this paper. Let Γ = {1, . . . , n}. Each spacecraft is regarded
as a node and the information exchange among n spacecraft is de-
noted by a directed graph G(A) = {V , E, A}. V = {vi, i = 1, . . . , n}
is the set of nodes, E ⊆ V×V is the set of edges andA = [aij] ∈ Rn×n

is the weighted adjacency matrix of the graph G(A) with non-
negative adjacency elements aij. If there is an edge from node j to
node i, i.e., (vj, vi) ∈ E, then aij > 0, which means there exists an
available information channel from node j to node i. Moreover, we
assume that aii = 0 for all i ∈ Γ . The set of neighbors of node i
is denoted by Ni = {j : (vj, vi) ∈ E}. The out-degree of node vi is
defined as degout(vi) = di =

n
j=1 aij =


j∈Ni

aij. Then the de-
gree matrix of digraph G is D = diag{d1, . . . , dn} and the Laplacian
matrix of digraph G is L = D − A.

A path in directed graph G from vi1 to vik is a sequence of
vi1 , vi2 , . . . , vik of finite nodes starting with vi1 and ending with vik
such that (vil , vil+1) ∈ E for l = 1, 2, . . . , k− 1. The directed graph
G is strongly connected if there is a path between any two distinct
vertices.

2.2. Flexible spacecraft attitude model

The model of flexible spacecraft attitude consists of two parts:
the kinematic model and the dynamic model. Based on the quater-
nion (Shuster, 1993), the kinematic equation of the ith spacecraft
is described by

q̇i =
1
2
E(qi)ωi, i ∈ Γ = {1, . . . , n}, (1)

where qi = [qi,0, qi,1, qi,2, qi,3]T = [qi,0, qTi,v]
T is unit quater-

nion, ωi = [ωi,1, ωi,2, ωi,3]
T is the angular velocity vector, and

E(qi) =


−qTi,v

−s(qi,v)+ qi,0I3


,where I3 denotes the 3 × 3 identity ma-

trix and s(·) denotes the skew matrix. The skew matrix is defined

as s(x) =


0 x3 −x2

−x3 0 x1
x2 −x1 0


for any x = [x1, x2, x3]T ∈ R3, which

satisfies ∥s(x)∥ = ∥x∥. In addition, the unit quaternion satisfies the
constraint condition

q2i,0 + qTi,vqi,v = 1. (2)

FromGennaro (2003), the dynamic equation of the ith spacecraft is

Jiω̇i + δTi η̈i = s(ωi)(Jiωi + δTi η̇i)+ τi,

η̈i + Ciη̇i + Kiηi = −δiω̇i i ∈ Γ , (3)

where Ji = JTi is the positive definite inertia matrix, τi = [τi,1,

τi,2, τi,3]
T is the control torque vector, δi is the coupling matrix be-

tween the rigid body and the flexible attachments, ηi is the vector
of the modal coordinate, Ci = diag{2ξi,jωi,nj, j = 1, . . . ,Ni} is the
damping (diagonal) matrix, Ki = diag{ωi,nj, j = 1, . . . ,Ni} is the
stiffness matrix, Ni is the number of flexible attachments for ith
spacecraft, ωi,nj is the natural frequencies and ξi,j is the associated
damping.

As that in Gennaro (2003), denote ψi = η̇i + δiωi and Jm,i =

Ji − δTi δi. The attitude Eqs. (1) and (3) can be rewritten as

q̇i =
1
2
E(qi)ωi, η̇i = ψi − δiωi,

ψ̇i = −(Ciψi + Kiηi − Ciδiωi),

Jm,iω̇i = s(ωi)(Jm,iωi + δTi ψi)

+ δTi (Ciψi + Kiηi − Ciδiωi)+ τi, i ∈ Γ . (4)

2.3. Control objective

The goal of this paper is to design a distributed attitude control
law for the n flexible spacecraft such that all the attitudes can
reach consensus/synchronization and the induced oscillations of
the spacecraft flexible appendages are damped out.

Lemma 1 (Xiao, Wang, Chen, & Gao, 2009). If a directed graph G is
strongly connected, then there is a positive vector γ = [γ1, . . . , γn]

T

∈ Rn (i.e. γi > 0, i = 1, . . . , n) such that γ T L = 0, where L the
corresponding Laplacian matrix L of graph G.

3. Main results

The controller design method is mainly based on the backstep-
ping design. Specifically speaking, the design procedure is divided
into two steps:
(i) For the kinematic subsystem and modal dynamics

q̇i =
1
2
E(qi)ωi, η̇i = ψi − δiωi,

ψ̇i = −(Ciψi + Kiηi − Ciδiωi), i ∈ Γ , (5)

considering ωi as the virtual input, a virtual angular velocity ω∗

i
is designed such that the attitudes of the kinematic subsystem
achieve consensus. Here, we first consider the case that the
modal variables ηi and ψi are measured and then consider the
unmeasured case.
(ii) For the dynamic subsystem, a control law τi is designed such
that the virtual velocity can be tracked by the real angular velocity.

3.1. Virtual angular velocity design

In this subsection, the angular velocity ωi is regarded as a vir-
tual control input and is designed such that the attitude synchro-
nization can be achieved. We first consider the case that themodal
variables ηi and ψi are known.

A. Case of known modal variables ηi and ψi

Lemma 2. For the subsystem (5), if the directed graphG(A) is strongly
connected and the virtual angular velocity is designed as

ω∗

i = −k1

j∈Ni

aij

(qi,v − qj,v)+ [(ψT

i Ci − 2ηTi Ki)δi]
T

− [(ψT
j Cj − 2ηTj Kj)δj]

T

, i ∈ Γ , (6)

where k1 > 0, then the attitude synchronization can be achieved
asymptotically.

Proof. According to Lemma1, if the directed graphG(A) is strongly
connected, there exists a positive column vector γ = [γ1, . . . ,
γn]

T
∈ Rn such that γ T L = 0. Consider the following candidate

Lyapunov function

V1 =

n
i=1

γiWi, Wi =


(2 − 2qi,0)+

1
2
ψT

i ψi + ηTi Kiηi

+
1
2
(ψi + Ciηi)

T (ψi + Ciηi)


. (7)

By the definition of E(qi), the derivative ofWi along system (5) is

Ẇi = −ηTi CiKiηi − ψT
i Ciψi + [qTi,v + (ψT

i Ci − 2ηTi Ki)δi]ωi. (8)

Denote

βi = qi,v + [(ψT
i Ci − 2ηTi Ki)δi]

T , (9)
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