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a b s t r a c t

In multiple speaker scenarios, the linearly constrained minimum variance (LCMV)
beamformer is a popular microphone array-based speech enhancement technique, as it
allows minimizing the noise power while maintaining a set of desired responses towards
different speakers. Here, we address the algorithmic challenges arising when applying the
LCMV beamformer in wireless acoustic sensor networks (WASNs), which are a next-
generation technology for audio acquisition and processing. We review three optimal
distributed LCMV-based algorithms, which compute a network-wide LCMV beamformer
output at each node without centralizing the microphone signals. Optimality here refers
to equivalence to a centralized realization where a single processor has access to all
signals. We derive and motivate the algorithms in an accessible top-down framework that
reveals their underlying relations. We explain how their differences result from their
different design criterion (node-specific versus common constraints sets), and their
different priorities for communication bandwidth, computational power, and adaptivity.
Furthermore, although originally proposed for a fully connected WASN, we also explain
how to extend the reviewed algorithms to the case of a partially connected WASN, which
is assumed to be pruned to a tree topology. Finally, we discuss the advantages and
disadvantages of the various algorithms
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1. Introduction

A general problem of interest in the field of speech
processing is to extract a set of desired speech signals from
microphone recordings that are contaminated by inter-
fering speakers or other noise sources in a reverberant
enclosure. By exploiting the spatial properties of the
speech and noise signals, array-processing techniques
can significantly outperform single-channel techniques in
terms of improved interference suppression and reduced
speech distortion, especially in scenarios with non-stationary
noise sources (such as interfering speakers).

A family of array-processing techniques, known as beam-
forming, typically performs a linear filter-and-sum operation
on the microphone signals, where the filters are optimized
according to certain design criteria [1–3]. In classical speech
beamformer (BF) setups, a microphone array is placed
somewhere within the enclosure, preferably close to the
desired speakers (as in mobile phone or personal computer
applications [4]). In this case, the received signal-to-noise
ratio (SNR) and direct-to-reverberant ratio (DRR) are often
sufficiently large, enabling the BF to obtain adequate perfor-
mance. However, in applications where the desired sources
are far away from the array, or if the array contains too few
microphones to obtain the required speech enhancement
performance, it may be useful to add additional microphone
arrays at other places within the enclosure to collect more
data over a wider area.

Recent technological advances in the design of minia-
ture and low-power electronic devices enable the deploy-
ment of so-called wireless sensor networks (WSNs)
[5–7]. A WSN consists of autonomous self-powered
devices or nodes, which are equipped with sensing,
processing, and communicating facilities. The WSN con-
cept is quite versatile and has applications in environ-
mental monitoring, biomedicine, security and surveillance.
In this paper we consider WSNs designed for acoustic
signal processing tasks, often referred to as wireless
acoustic sensor networks (WASNs) [8], where each node
is equipped with one or more microphones. A WASN allows
to deploy a large number of microphone arrays at various
positions, and can be exploited in hearing aids [9–11],
(hands-free) speech communication systems [12–14],
acoustic monitoring [15–20], ambient intelligence [21], etc.

Alongside their numerous advantages, AWASNs intro-
duce several challenges, in particular related to the
limited per-node energy resources, since the finite battery
life constrains the communication and computational
energy usage at each node. These energy limitations,
combined with the fact that each node has access only
to partial data, require special attention when developing
WASN algorithms. These algorithms can be either distrib-
uted, to reduce the wireless data transfer and to share the
processing burden between multiple nodes, or centralized,
where all the data is transferred to a so-called fusion
center (FC) for further processing. A distributed approach
is typically preferred in terms of energy consumption and
scalability (or in absence of a powerful FC), although the
algorithm design is much more challenging, especially
when pursuing a similar performance as in a centralized
procedure.

Distributed BF or speech enhancement algorithms
typically rely on compression techniques to minimize the
data that is exchanged between the nodes. However,
applying straightforward signal compression methods
on the microphone signals (at each node independently)
usually results in a suboptimal BF performance. Moreover,
common speech or audio compression methods introduce
distortion that may destroy important spatial information,
and render the beamforming process useless.

Several distributed BFs or speech enhancement algo-
rithms have been proposed in the literature, ranging from
heuristic or suboptimal methods [12,22–24] to algorithms
for which optimality can be proven [9–11,25–28]. In this
context, ‘optimality’ refers to the fact that the algorithm
obtains the same BF outputs as its centralized counterpart
algorithm, i.e., as if each node would have access to the full
set of microphone signals. In this paper, we confine ourselves
to the review of optimal distributed minimum-variance BF
algorithms where nodes share (compressed) signals and
parameters, and where the general aim is to achieve the
same speech enhancement performance as obtained with a
centralized minimum-variance BF. We mainly focus on the
BF algorithm design challenges, and we disregard several
other (but equally important) challenges, such as synchroni-
zation [29–32], node subset selection [33,34], topology
selection, distortion due to audio compression [22,35,36],
packet loss, input-output delay management [37], etc.

We review three state-of-the-art distributed minimum-
variance BF algorithms, namely the distributed LCMV
(D-LCMV) BF [26], the linearly constrained distributed adap-
tive node-specific signal estimation (LC-DANSE) algorithm
[38], and the distributed generalized sidelobe canceler (DGSC).
Although these algorithms were originally proposed indepen-
dently from each other, they are implicitly related as they are
based on a similar LCMV optimization criterion. However,
despite this common underlying BF design criterion, the
actual relation between the algorithms is not immediately
apparent from the original publications [26,27,38], as they
start from different problem statements and algorithm design
principles. For example, while the generalized sidelobe can-
celer (GSC) can be derived from the linearly constrained
minimum variance (LCMV) BF in a centralized context, there
is currently no analogy in which the DGSC in [27] is derived
from the D-LCMV BF in [26]. In fact, the two algorithms even
have a slightly different communication cost (while theoreti-
cally achieving the same BF solution), and it is unclear where
and why this discrepancy originates.

Therefore, a first goal of this review paper is to provide
a top-down description of these algorithms, in a way such
that they can be described within the same generic frame-
work. This generic framework allows to introduce the
three algorithms in an accessible way, while also revealing
the important similarities between them. The common
framework in which the three algorithms are described
then also explains how they are fundamentally different at
certain crucial points, and we compare the advantages and
disadvantages that result from these differences. Further-
more, we will explain why the DGSC cannot be straight-
forwardly inferred from the D-LCMV BF (as opposed to the
centralized case), and why there is a discrepancy between
them in terms of communication cost.
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