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a b s t r a c t

In this paper, an original approach to frequency identification is explained and demonstrated through
an application in the domain of microwave filters. This approach splits into two stages: a stable and
causal model of high degree is first computed from the data (completion stage); then, model reduction
is performed to get a rational low order model. In the first stage the most is made of the data taking
into account the expected behavior of the filter. A reduced order model is then computed by rational
H2 approximation. A new and efficient method has been developed, improved over the years and
implemented to solve this problem. It heavily relies on the underlyingHilbert space structure andon anice
parameterization of the optimization set. This approach guarantees the stability of theMIMOapproximant
of prescribed McMillan degree.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Themicrowave filters that we consider are used in telecommu-
nication satellites for channel multiplexing.

These electromagnetic waveguide filters are made of resonant
cavities (see Fig. 1) interconnected by coupling irises (orthogonal
double slits). Each cavity has 3 screws which allow one to tune
the filter. Using a low-pass transformation these high-pass filters
are usually modeled by a low-pass electrical circuit (see Fig. 2). In
this model, Ω is the normalized frequency, each resonant cavity
mode is represented by a fictive resonant circuit (frequency Mkk)
and the coupling between modes (produced by the irises) by
impedance inverters (jMkl). In the remainder of the paper we will
adopt themathematical notation, i rather than j, for the square root
of −1. Electrical power transfer is then described by a scattering
matrix. From a mathematical viewpoint, the scattering matrix R
is a rational matrix function with complex coefficients which is
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stable (poles with negative real parts) lossless (R(iω) is unitary)
and symmetric. The geometry of the filter is characterized by the
electrical parameters which appear on a realization in particular
form of the scattering matrix. Namely, R(s) = I + C(s I − A)−1B
with

C =


i

2r1 0 · · · 0
0 · · · 0 i


2r2


, B = C t ,

A = −R − iM, A = At r = −
1
2
C tC,

(1)

where r1 and r2 are the input and output loads and the matrix
M is the coupling matrix. The structure of M (non-zeros entries)
specifies the way resonators are coupled to one another. The
McMillan degree of R corresponds to the number of circuits, that
is the number of resonant modes or else two times the number of
cavities.

The problem of extracting coupling parameters from frequency
scattering measurements is essential with a view to reducing the
cost of hardware and CAD tuning. The direct approach consists
in feeding to a generic optimizer the function evaluating the
scattering matrix from the coupling parameters, in order to fit the
data. However, it often depends on a favorable initial guess and
substantial efforts are currently being spent to design more robust
methods. Another approach consists in first identifying a rational
(linear) model from the data. Then, the coupling parameters are
extracted from this rational model using classical design methods.
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Fig. 1. A microwave filter.
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Fig. 2. Low-pass prototype.

In the filter community, the so-called Cauchy method is widely
used to compute the rational model (Adve, Sarkar, Rao, Miller, &
Pflug, 1997; Lampérez, Sarkar, & Palma, 2002). Let us point out
three major problems encountered in this direction, and in many
other methods proposed in the literature:

• there is no guarantee on the stability of the rational model,
i.e. the derived model can have unstable poles;

• there is no control on the McMillan degree of the model;
• no constraint is imposed to the model outside the frequency

band of measurement (broadband), which may result in
unrealistic behavior there.

Many toolboxes propose input–output identification, while
a few deal with frequency data. The software Vector Fitting
and its Matrix Fitting extension (see Gustavsen & Semlyen,
1999, 2004 and the bibliography therein) has become popular
in the electromagnetic simulation community. However, the
convergence towards a stable rational approximant, optimal in
some least-square sense, is not guaranteed by this algorithm.
Moreover no control is given in the MIMO case on the overall
McMillan degree of the result, but only on its number of distinct
poles. The same problem arises with the Frequency Domain
Identification Toolbox (Kollár, 2004) which only deals with SISO
systems. This is unacceptable for the application we have in mind,
in which the target McMillan degree is prescribed in advance
and given by the number of coupled resonators present in the
equivalent circuit of the filter.

To overcome these difficulties, we have developed a two stage
approach to identify a rational model from the scattering data.
A stable and causal model of high degree is first computed from
the data (completion stage); then, model reduction is performed
to get a model of the prescribed order. The first stage will be
addressed in Section 3. Then we will consider the model reduction
step. We tackle this problem using a rational H2 approximation
and the original approach developed over the years in Baratchart,
Cardelli, and Olivi (1991), Fulcheri and Olivi (1998) and Marmorat,
Olivi, Hanzon, and Peeters (2002). We present here the state of the
art of this approach which includes an efficient parameterization
of balanced output pairs. The exposition is definitely application
oriented, so that the emphasis will be put on the effective
implementation of the method.

2. The Hilbert space framework

To deal with these completion and model reduction problems,
we thus favor an approach based on approximation. A relevant

context to deal with approximation is that of a Hilbert space. On
the other hand, stability and causality of a rational model are
equivalent to the analyticity of the transfer function in the closed
right half-plane (poles at finite distance in the open left half-plane).
We denote by C+ and C− the open right and left half-planes.
To properly handle stability and causality, we embed rational
functions in a larger space of analytic functions in C+, namely a
Hardy space naturally endowed with an L2 norm. Note that, due
to the low-pass transformation, the frequency data and the model
that we consider do not satisfy the conjugacy requirement. This is
why we consider Hardy spaces of complex functions.

The usual Hardy space of the half-plane, H2(C+), consists of
functions f analytic in C+, whose L2-norm remains uniformly
bounded on vertical lines,

sup
x>0


∞

−∞

|f (x + iω)|2dω < ∞.

The Hardy space of the left half-plane, H2(C−), is defined in a
similar way. An important fact is that the Laplace transform gives
an isometry from L2(R±) onto H2(C±). It allows one to consider
these Hardy spaces as subspaces of L2(iR), the image of L2(R) by
the Laplace transform (Partington, 1997). Moreover,

L2(iR) = H2(C+)⊕ H2(C−).

Each function in L2(iR) can thus be decomposed as the sum of a
function in H2(C+) (stable part) and a function in H2(C−) (anti-
stable part).

However, a stable causal function which fails to be strictly
proper (to be 0 at ∞) does not belong to L2(iR). In order to include
these functions in our setting, we shall replace the usual Lebesgue
measure by the weighted measure dµ(w) =

dω
1+ω2 , which also has

the advantage to penalize high frequencies. The associated Hardy
spaces H2

µ(C
+) and H2

µ(C
−) are defined in a similar way and can

be viewed as subspaces of the space L2(dµ) of functions defined
on the imaginary axis and such that

∥f ∥2
µ =


∞

−∞

|f (iω)|2
dω

1 + ω2
< ∞.

However, H2
µ(C

+) and H2
µ(C

−) fail to be orthogonal complements,
since their intersection is not empty (it contains for example
constant functions). For f ∈ L2(dµ), we denote by P+(f ) its
orthogonal projection onto H2

µ(C
+) (stable part) and by P−(f ) its

orthogonal projection on the orthogonal complement of H2
µ(C

+)
(unstable part). Hardy spaces thus provide an interesting tool to
estimate causality and stability of a given transfer function.

3. Compensation of delay components and completion of the
data

After the low-pass frequency transformation, we suppose that
the harmonic scattering measurements of the filter yield the
knowledge of a 2 × 2 matrix function S̃(iw) defined on a strict
sub-interval J of the imaginary axis. In practice this function is
obtained thanks to the interpolation (splines) of a discrete set of
measurement points. Themathematicalmodelwewant to identify
from these measurements is given by
ei
α
2 h(w) 0
0 ei

β
2 h(w)


R(iw)


ei
α
2 h(w) 0
0 ei

β
2 h(w)


,

whereR is the 2×2 rational scatteringmatrix of the low-passmodel
of the filter and the exponential terms are due to the access lines
used to perform themeasurements. The transformation h(w)maps
normalized frequencies (low-pass model) to high frequencies
(original system).
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