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a b s t r a c t

In the framework of Compressive Sensing (CS), the inherent structures underlying sparsity
patterns can be exploited to promote the reconstruction accuracy and robustness. And this
consideration results in a new extension for CS, called model based CS. In this paper, we
propose a general statistical framework for model based CS, where both sparsity and
structure priors are considered simultaneously. By exploiting the Latent Variable Analysis
(LVA), a sparse signal is split into weight variables representing values of elements and
latent variables indicating labels of elements. Then the Gamma-Gaussian model is
exploited to describe weight variables to induce sparsity, while the beta process is
assumed on each of the local clusters to describe inherent structures. Since the complete
model is an extension of Bayesian CS and the process is for local properties, it is called
Model based Bayesian CS via Local Beta Process (MBCS-LBP). Moreover, the beta process is
a Bayesian conjugate prior to the Bernoulli Process, as well as the Gamma to Gaussian
distribution, thus it allows for an analytical posterior inference through a variational Bayes
inference algorithm and hence leads to a deterministic VB-EM iterative algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Compressive Sensing (CS) provides a new sampling
paradigm that allows signals to be sampled with sub-
Nyquist rate (2 times of signals' Fourier bandwidth) [1]. In
the framework of CS, samples are collected via a linear
projection satisfying restricted isometry property, and
provided that signals are sparse (itself or under transform),
the exact recovery can be guaranteed theoretically [2]. The
reconstruction of signals is often casted as the following

regularized optimization problem:

θ⋆ ¼ arg min
θ

1
2 ‖y�Φθ‖22þλ � ψ θð Þ ð1Þ

with θARn being the sparse signals, ΦARm�n the sensing
matrix and yARm the collected samples. ψ :Rn-Rþ is a
regularization term that induces the sparsity of solutions,
e.g. the ℓp norm with pA ½0;1�. λ40 is a constant that
balances distortion and sparsity.

Exploiting sparse regularization term, lots of algorithms
have been proposed recently such as Linear Programming
(Basis Pursuit) methods [3] and iterative soft thresholding
algorithm [4] with p¼1, greedy methods [5,6] and itera-
tive hard thresholding algorithm [7] with p¼0, iterative
re-weighted least squares regression [8] and Bayesian
methods [9,10] that can be considered to solve the
regularized optimization problem with pA ð0;1�.
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On the other hand, besides the sparse prior, structural
constraint on the support of the sparse signals has been
found in many practical applications. The most common
example is the wavelet coefficients that can be considered
as a tree-structured sparse vector [11,12] due to the
relationship between two conjuncted wavelet scales.
Another application is ECG telemonitoring where Zhang
et al. [13] exploited the block structure on the ECG signal
to improve the compression performance. Similar block/
cluster structure has also been exploited in ISAR imaging
where the support constraints are due to the continuity of
the target scene [14–16] and image denoising where the
similar patches share the same sparsity patterns [17].

Theoretically, it can be proven that the introduction of
structural priori largely improves the reconstruction perfor-
mance [18,19]. Considering structured sparse signal model
leads to an extension to CS, i.e. Model-based Compressive
Sensing (MCS) [19]. Accordingly, many new algorithms are
proposed by imposing structural sparse regularization on (1),
for instance the mixed ℓ1;2 norm that has been widely
employed to cope with problems with block structured
sparsity [20] or multiple measurement vector model [17].
Other type of approaches has been exploited to cope with
different structures. Group-structured extension to OMP [21],
Block-OMP [22], Tree-based OMP [19], etc. are OMP-based
approaches that proposed recently. However, the above
methods are parametric approaches that require to set
structure-related parameters at first. Another type of
approaches is based on Bayesian CS framework [9], including
Tree-based Bayesian CS [11], Cluss-MCMC/-VB [23,24], BSBL
[25] and so on. The Bayesian approaches are non-parametric,
but only specific to one type of structures. More recently, a
general model for structured sparse signals is proposed via
the Boltzmann machine [26,27], while the interaction matrix
for the structural model should be set or pre-estimated.

In this paper, we propose a general statistical framework
for model based CS, where both sparsity and structure priors
are considered simultaneously. By exploiting the Latent
Variable Analysis (LVA), a sparse signal is split into weight
variables representing values of elements and latent vari-
ables indicating labels of elements. Then we assume that
weight variables obey a Gamma-Gaussian model to induce
the sparsity. On the other hand, according to the inherent
structures, the latent variables can be described by a graph
with local clusters, thus a beta-Bernoulli process is assumed
on each of the local clusters to describe the properties of
structures. Since the complete model is an extension of
Bayesian CS and the process is for local properties, it is called
Model based Bayesian CS via Local Beta Process (MBCS-LBP).
Moreover, the beta process is a Bayesian conjugate prior to
the Bernoulli Process, as well as the Gamma to Gaussian
distribution, thus it allows for an analytical posterior infer-
ence through a variational Bayes inference algorithm and
hence leads to a deterministic VB-EM iterative algorithm.

The rest of paper is organized as follows. In Section 2,
we briefly review the framework of Bayesian CS. Then the
proposed structured sparsity model is presented in Section 3.
After that, the posterior inference through the variational
Bayes approach is given in Section 4. Experiments are carried
out in Section 5 to verify superior performance of the
proposed algorithm. The paper ends up with a conclusion.

2. Bayesian compressive sensing

The canonical form of CS could be written as follows:

y¼Φθþϵ ð2Þ

where ΦARm�n is the sensing matrix satisfying the so-called
RIP [2], θARn is the original sparse signal, yARm is the
compressed measurement and ϵ is the possible noise or
perturbations. Note that m{n to ensure the sufficient
compression, thus the reconstruction for θ is degenerated
into an underdetermined linear inverse problem. Assuming a
white noise for ϵ with variance σ0 ¼ α�1

0 , one can easily
obtain a Gaussian likelihood model on the measurements y,
written as

p yjθð Þpexp �α0
2
Jy�ΦθJ2

� �
ð3Þ

On the other hand, a sparsity-inducing prior is imposed
via a generalized Gaussian distribution on original signals
[3,28,8], such as

pðθÞpexp � ∑
n

i ¼ 1
jθijp

 !
ð4Þ

where pA ½0;1�. Thus the Maximum a Posteriori (MAP)
solutions to (2) estimator for θ̂ could be formulated as

θ̂ ¼ arg min
θ

λJy�ΦθJ2þ ∑
n

i ¼ 1
jθijp ð5Þ

where λ¼ α0 is a trade-off parameter balancing sparsity
with quality of fit.

Solving the MAP solution is possible to find the true
sparse reconstruction for CS. Nevertheless, the trade-off
parameter λ in (5) reminds to be estimated via other
algorithms or fixed in advance according to prior knowl-
edge. A nonparametric method to solve the sparse linear
inverse problem will be applausive.

Considering the process of CS measurement as a
hierarchical Bayesian model as shown in Fig. 1, it provides
a new extension to CS [29,9,10], called Bayesian CS and
leads to a nonparametric sparse linear inverse solver.
Instead of imposing a generalized Gaussian prior for sparse
signals, Bayesian CS injects the sparse constraint through a
conditional Gaussian prior (6) with its inverse variance
(precision) guided by a hyperprior of Gamma distribution,
or called a Gamma-Gaussian model.

p θjαð Þp ∏
n

i ¼ 1
exp �αi

2
θ2i

� �
ð6Þ

where αi obeys a Gamma distribution pðαija; bÞpαa�1
i e�bαi

with a; b40.
Integrating out the hyperparameters α9fαig1:n, the

implicit prior for sparse signals θ can be formulated via

p θ a; b
�
¼
Z

p θ α
�
p α a; b

�
dα

����������
�

p ∏
n

i ¼ 1
bþθ2i

2

 !� aþ1=2ð Þ
ð7Þ
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