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a b s t r a c t

In this paper design methods are given for synchronization control of discrete-time multi-agent systems
on directed communication graphs. The graph properties complicate the design of synchronization
controllers due to the interplay between the eigenvalues of the graph Laplacian matrix and the required
stabilizing gains. Twomethods are given herein that decouple the design of the synchronizing gains from
the detailed graph properties. Both are based on computation of the local control gains using Riccati
design; the first is based on an H∞ type Riccati inequality and the second on an H2 type Riccati equation.
Conditions are given for synchronization based on the relation of the graph eigenvalues to a bounded
circular region in the complex plane that depends on the agent dynamics and the Riccati solution. The
notion of ‘synchronizing region’ is used. An example shows the effectiveness of these design methods for
guaranteeing synchronization in cooperative discrete-time systems.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The last two decades have witnessed an increasing interest
in multi-agent network cooperative systems, inspired by natural
occurrence of flocking and formation forming. These systems are
applied to formations of spacecrafts, unmanned aerial vehicles,
mobile robots, distributed sensor networks etc. (Olfati-Saber, Fax,
& Murray, 2007). Early work with networked cooperative systems
in continuous and discrete time is presented in Fax and Murray
(2004), Jadbabaie, Lin, and Morse (2003), Olfati-Saber and Murray
(2003, 2004), Ren and Beard (2005) and Tsitsiklis (1984). These
papers generally referred to consensus without a leader. By adding
a leader that pins to a group of other agents one can obtain
synchronization to a command trajectory using a virtual leader
(Jadbabaie et al., 2003), also named pinning control (Li, Duan, Chen,
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& Huang, 2010; Wang & Chen, 2002). Necessary and sufficient
conditions for synchronization are given by the master stability
function, and the related concept of the synchronizing region, in
Duan, Chen, and Huang (2009), Li et al. (2010) and Pecora and
Carroll (1998). For continuous-time systems synchronization was
guaranteed (Li et al., 2010; Tuna, 2008; Zhang & Lewis, 2011) using
optimal state feedback derived from the continuous time Riccati
equation. It was shown that, using Riccati design for the feedback
gain of each node guarantees an unbounded right-half plane region
in the s-plane. For discrete-time systems such general results
are still lacking, though You and Xie (2011a) deals with single-
input systems and undirected graph topology and You and Xie
(2011b) deals with multivariable systems on digraphs. These were
originally inspired by the earlier work of Elia and Mitter (2001)
and Fu and Xie (2005) concerning optimal logarithmic quantizer
density for stabilizing discrete time systems.

In this paper we are concerned with synchronization for agents
described by linear time-invariant discrete-time dynamics. The
interaction graph is directed and assumed to contain a directed
spanning tree. For the needs of consensus and synchronization to
a leader or control node we employ pinning control (Jadbabaie
et al., 2003; Wang & Chen, 2002). The concept of synchronizing
region (Duan et al., 2009; Li et al., 2010; Pecora & Carroll, 1998)
is instrumental in analyzing the synchronization properties of
cooperative control systems. The synchronizing region is the
region in the complex plane within which the graph Laplacian

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.11.038

http://dx.doi.org/10.1016/j.automatica.2012.11.038
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:kristian.hengster-movric@mavs.uta.edu
mailto:youky@tsinghua.edu.cn
mailto:Lewis@uta.edu
mailto:elhxie@ntu.edu.sg
http://dx.doi.org/10.1016/j.automatica.2012.11.038


K. Hengster-Movric et al. / Automatica 49 (2013) 414–423 415

matrix eigenvalues must reside to guarantee synchronization.
The crucial difference between systems in continuous time and
discrete time is the form of the stability region. For continuous-
time systems the stability region is the left half s-plane, which is
unbounded by definition, and a feedback matrix can be chosen
(Li et al., 2010; Zhang & Lewis, 2011) such that the synchronizing
region for a matrix pencil is also unbounded. On the other
hand the discrete-time stability region is the interior of the unit
circle in the z-plane, which is inherently bounded. Therefore,
the synchronizing regions are bounded as well. This accounts for
stricter synchronizability conditions in discrete-time, such as those
presented in You and Xie (2011a,b).

In the seminal paper (Li, Duan, & Chen, 2011) an algorithm is
given based on an H∞ type Riccati equation for synchronization
control of linear discrete-time systems that have no poles outside
the unit circle. The case of consensus without a leader is
considered.

This paper extends results in You and Xie (2011b) to provide
conditions for achieving synchronization of identical discrete-time
state space agents on a directed communication graph structure.
It extends results in Li et al. (2011) to the case of unstable
agent dynamics. This paper considers synchronization to a leader
dynamics. The concept of discrete synchronizing region in the
z-plane is used.

The graph properties complicate the design of synchronization
controllers due to the interplay between the eigenvalues of
the graph Laplacian matrix and the required stabilizing gains.
Two approaches to testing for synchronizability are given which
decouple the graph properties from the feedback design details.
Both give methods for selecting the feedback gain matrix to yield
synchronization. The first result, based on an H∞ type Riccati
inequality, gives a milder condition for synchronization in terms
of a circle whose radius is generally difficult to compute. The
second result is in terms of a circlewhose radius is easily computed
from an H2 Riccati equation solution, but gives a stricter condition.
Both are shown to yield known results in the case of single-input
systems on undirected graphs. Based on the given designs, results
are given on convergence and robustness of the design. An example
illustrates the usefulness and effectiveness of the proposed design.

2. Riccati decentralized feedback design for system synchro-
nization

2.1. Graph properties and notation

Consider a graph G (V, E) with a nonempty finite set of N
verticesV = {v1, . . . , vN} and a set of edges or arcs E ⊆ V×V . It is
assumed that the graph is simple, i.e. there are no repeated edges
or self-loops (vi, vi) ∉ E, ∀i. General directed graphs (digraphs)
are considered and it is taken that information propagates through
the graph along directed arcs. Denote the connectivity matrix as
E = [eij] with eij > 0 if (vj, vi) ∈ E and eij = 0 otherwise. Note
that diagonal elements eii = 0. The set of neighbors of node vi is
denoted as Ni = {vj : (vj, vi) ∈ E}, i.e. the set of nodes with arcs
incoming into vi. Define the in-degree matrix as a diagonal matrix
D = diag (d1 . . . dN) with di =


j eij the (weighted) in-degree of

node i (i.e. the i-th row sumof E). Define the graph Laplacianmatrix
as L = D − E, which has all row sums equal to zero.

A directed path from node vi1 to node vik is a sequence of
edges


vi1,vi2


,

vi2,vi3


, . . .


vik−1 , vik


, with


vij−1 , vij


∈ E for

j = {2, . . . , k}. The graph is said to contain a (directed) spanning
tree if there exists a vertex such that every other vertex inV can be
connected by a directed path starting from it. Such a special vertex
is then called a root.

We denote the real numbers by R, the positive real numbers by
R+, and the complex numbers by C.

2.2. State feedback for synchronization of multi-agent systems

Given a graph G (V, E), endow each of its N nodes with a state
vector xi ∈ Rn and a control input ui ∈ Rm and consider at each
node the discrete-time dynamics

xi (k + 1) = Axi (k) + Bui (k) . (1)

Assume that (A, B) is stabilizable and B has full column rankm.
Consider also a leader node, control node, or command

generator

x0 (k + 1) = Ax0 (k) (2)

with x0 ∈ Rn. For instance, if n = 2 and A has imaginary poles then
the leader trajectory is a sinusoid.

The cooperative tracker or synchronization problem is to select
the control signals ui, using the relative state of node i to its
neighbors, such that all nodes synchronize to the state of the
control node, that is, limk→∞ ∥xi (k) − x0 (k)∥ = 0, ∀i. These
requirements should be fulfilled for all initial conditions xi (0).
If the trajectory x0 (k) approaches a fixed point, this is normally
called the consensus problem.

To achieve synchronization, define the local neighborhood
tracking errors

εi =


j∈Ni

eij

xj − xi


+ gi (x0 − xi) (3)

where pinning gain gi ≥ 0 is nonzero if node vi can sense
the state of the control node. The intent is that only a small
percentage of nodes have gi > 0, yet all nodes should synchronize
to the trajectory of the control node using local neighbor control
protocols (Wang & Chen, 2002). It is assumed that at least one
pinning gain is nonzero. Note that the local neighborhood tracking
error represents the information available to agent i for control
purposes.

Choose the input of agent i as the weighted local control
protocol

ui = c (1 + di + gi)−1 Kεi, (4)

where c ∈ R+ is a coupling gain to be detailed later. Then, the
closed-loop dynamics of the individual agents are given by

xi (k + 1) = Axi (k) + c (1 + di + gi)−1 BKεi (k) . (5)

Defining global tracking error and state vectors ε = [εT
1 . . . εT

N ]
T

∈

RnN , x = [xT1 . . . xTN ]
T

∈ RnN , one may write

ε (k) = − (L + G) ⊗ Inx (k) + (L + G) ⊗ Inx̄0 (k) (6)

where G = diag (g1, . . . , gN) is the diagonal matrix of pinning
gains and x̄0(k) = 1 ⊗ x0 (k) with 1 ∈ RN the vector of 1’s. The
global dynamics of the N-agent system is given by

x (k + 1) =

IN ⊗ A − c (I + D + G)−1 (L + G) ⊗ BK


x (k)

+ c (I + D + G)−1 (L + G) ⊗ BK x̄0 (k) . (7)

Define the global disagreement error δ (k) = x (k)−x̄0(k) (Olfati-
Saber & Murray, 2003). Then one has the global error dynamics

δ (k + 1) = Acδ (k) (8)

where the closed-loop system matrix is

Ac =

IN ⊗ A − c (I + D + G)−1 (L + G) ⊗ BK


. (9)

We shall refer to matrix

Γ = (I + D + G)−1 (L + G) (10)

as the (weighted) graph matrix and to its eigenvalues Λk, k =

1, . . . ,N , as the graph matrix eigenvalues. Assume the graph
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