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a b s t r a c t

We introduce a general notion of fractional (noninteger) derivative for functions defined
on arbitrary time scales. The basic tools for the time-scale fractional calculus (fractional
differentiation and fractional integration) are then developed. As particular cases, one
obtains the usual time-scale Hilger derivative when the order of differentiation is one, and
a local approach to fractional calculus when the time scale is chosen to be the set of real
numbers.

& 2014 Published by Elsevier B.V.

1. Introduction

Fractional calculus refers to differentiation and integra-
tion of an arbitrary (noninteger) order. The theory goes
back to mathematicians as Leibniz (1646–1716), Liouville
(1809–1882), Riemann (1826–1866), Letnikov (1837–
1888), and Grünwald (1838–1920) [24,38]. During the last
two decades, fractional calculus has increasingly attracted
the attention of researchers of many different fields
[1,9,10,29,31,33,35,41].

Several definitions of fractional derivatives/integrals have
been defined in the literature, including those of Riemann–
Liouville, Grünwald–Letnikov, Hadamard, Riesz, Weyl and
Caputo [24,36,38]. In 1996, Kolwankar and Gangal proposed

a local fractional derivative operator that applies to highly
irregular and nowhere differentiable Weierstrass functions
[8,26]. Here we introduce the notion of fractional derivative
on an arbitrary time scale T (cf. Definition 6). In the particular
case T¼R, one gets the local Kolwankar–Gangal fractional
derivative limh-0f ðtþhÞ� f ðtÞ=hα, which has been considered
in [26,27] as the point of departure for fractional calculus. One
of the motivations to consider such local fractional derivatives
is the possibility to deal with irregular signals, so common in
applications of signal processing [27].

A time scale is a model of time. The calculus on time scales
was initiated by Aulbach and Hilger in 1988 [7], in order to
unify and generalize continuous and discrete analysis [22,23].
It has a tremendous potential for applications and has recently
received much attention [3,16,17,20,21]. The idea to join the
two subjects— the fractional calculus and the calculus on time
scales — and to develop a Fractional Calculus on Time Scales,
was bornwith the Ph.D. thesis of Bastos [12]. See also [5,6,13–
15,25,37,40] and references therein. Here we introduce
a general fractional calculus on time scales and develop some
of its basic properties.
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Fractional calculus is of increasing importance in signal
processing [35]. This can be explained by several factors,
such as the presence of internal noises in the structural
definition of the signals. Our fractional derivative depends
on the graininess function of the time scale. We trust that
this possibility can be very useful in applications of signal
processing, providing a concept of coarse-graining in time
that can be used to model white noise that occurs in signal
processing or to obtain generalized entropies and new
practical meanings in signal processing. Indeed, let T be
a time scale (continuous time T¼R, discrete time T¼ hZ,
h40, or, more generally, any closed subset of the real
numbers, like the Cantor set). Our results provide a
mathematical framework to deal with functions/signals
f(t) in signal processing that are not differentiable in the
time scale, that is, signals f(t) for which the equality
Δf ðtÞ ¼ f ΔðtÞΔt does not hold. More precisely, we are able
to model signal processes for which Δf ðtÞ ¼ f ðαÞðtÞðΔtÞα,
0oαr1.

The time-scale calculus can be used to unify discrete
and continuous approaches to signal processing in one
unique setting. Interesting in applications, is the possibility
to deal with more complex time domains. One extreme
case, covered by the theory of time scales and surprisingly
relevant also for the process of signals, appears when one
fix the time scale to be the Cantor set [11,42]. The
application of the local fractional derivative in a time scale
different from the classical time scales T¼R and T¼ hZ
was proposed by Kolwankar and Gangal themselves: see
[27,28] where nondifferentiable signals defined on the
Cantor set are considered.

The article is organized as follows. In Section 2 we
recall the main concepts and tools necessary in the sequel.
Our results are given in Section 3: in Section 3.1 the notion
of fractional derivative for functions defined on arbitrary
time scales is introduced and the respective fractional
differential calculus developed; the notion of fractional
integral on time scales, and some of its basic properties, is
investigated in Section 3.2. We end with Section 4 of
conclusions and future work.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset
of R. Here we only recall the necessary concepts of the
calculus on time scales. The reader interested on the
subject is referred to the books [16,17]. For a good survey
see [3].

Definition 1. Let T be a time scale. For tAT we define the
forward jump operator s:T-T by sðtÞ≔inffsAT: s4tg,
and the backward jump operator ρ:T-T by ρðtÞ≔sup
fsAT: sotg.

Remark 2. In Definition 1, we put inf ∅¼ sup T (i.e.,
sðtÞ ¼ t) if T has a maximum t, and sup ∅¼ inf T (i.e.,
ρðtÞ ¼ t) if T has a minimum t, where ∅ denotes the
empty set.

If sðtÞ4t, then we say that t is right-scattered; if
ρðtÞot, then t is said to be left-scattered. Points that are
simultaneously right-scattered and left-scattered are

called isolated. If tosup T and sðtÞ ¼ t, then t is called
right-dense; if t4 inf T and ρðtÞ ¼ t, then t is called left-
dense. The graininess function μ:T-½0;1Þ is defined by
μðtÞ≔sðtÞ�t.

We make use of the set Tκ , which is derived from the
time scale T as follows: if T has a left-scattered maximum
M, then Tκ ¼T\fMg; otherwise, Tκ ¼T.

Definition 3 (Delta derivative [2]). Assume f :T-R and let
tATκ . We define

f Δ tð Þ ¼ lim
s-t

f ðsðsÞÞ� f ðtÞ
sðsÞ�t

; tas sð Þ;

provided the limit exists. We call f ΔðtÞ the delta derivative
(or Hilger derivative) of f at t. Moreover, we say that f is
delta differentiable on Tκ provided f ΔðtÞ exists for all tATκ .
The function f Δ:Tκ-R is then called the delta derivative of
f on Tκ .

Delta derivatives of higher-order are defined in the

usual way. Let rAN, Tκ0≔T, and Tκi≔ðTκi� 1 Þκ , i¼ 1;…; r.

For convenience we also put f Δ
0 ¼ f and f Δ

1 ¼ f Δ. The rth-

delta derivative f Δ
r

is given by f Δ
r ¼ ðf Δr� 1 ÞΔ:Tκr-R pro-

vided f Δ
r� 1

is delta differentiable.
The following notions will be useful in connection with

the fractional integral (Section 3.2).

Definition 4. A function f :T-R is called regulated pro-
vided its right-sided limit exist (finite) at all right-dense
points in T and its left-sided limits exist (finite) at all left-
dense points in T.

Definition 5. A function f :T-R is called rd-continuous
provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T. The
set of rd-continuous functions f :T-R is denoted by Crd.

3. Main results

We develop the basic tools of any fractional calculus:
fractional differentiation (Section 3.1) and fractional inte-
gration (Section 3.2). Let T be a time scale, tAT, and δ40.
We define the left δ-neighborhood of t as U �≔�t�δ; t½\T.

3.1. Fractional differentiation

We begin by introducing a new notion: the fractional
derivative of order αA �0;1� for functions defined on
arbitrary time scales. For α¼ 1 we obtain the usual delta
derivative of the time-scale calculus.

Definition 6. Let f :T-R, tATκ , and αA �0;1�. For
αA �0;1� \ f1=q: q is a odd numberg (resp. αA �0;1�\
f1=q: q is a odd numberg) we define f ðαÞðtÞ to be the num-
ber (provided it exists) with the property that, given any
ϵ40, there is a δ-neighborhood U �T of t (resp. left δ-
neighborhood U � �T of t), δ40, such that

j½f ðsðtÞÞ� f ðsÞ�� f ðαÞðtÞ½sðtÞ�s�αjrϵjsðtÞ�sjα

for all sAU (resp. sAU � ). We call f ðαÞðtÞ the fractional
derivative of f of order α at t.
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