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a b s t r a c t

It has been shown that iterative re-weighted strategies will often improve the perfor-
mance of many sparse reconstruction algorithms. However, these strategies are algorithm
dependent and cannot be easily extended for an arbitrary sparse reconstruction algorithm.
In this paper, we propose a general iterative framework and a novel algorithm which
iteratively enhance the performance of any given arbitrary sparse reconstruction algo-
rithm. We theoretically analyze the proposed method using restricted isometry property
and derive sufficient conditions for convergence and performance improvement. We also
evaluate the performance of the proposed method using numerical experiments with
both synthetic and real-world data.

& 2014 Published by Elsevier B.V.

1. Introduction

Compressed Sensing (CS) [1,2] is a new paradigm in
signal processing which exploits the sparse or compres-
sible nature of the signal to significantly reduce the
number of measurements without compromising on the
reconstruction quality. CS uses non-adaptive linear mea-
surements and guarantees robust reconstruction even in
the presence of measurement perturbations [3,4]. For this,
CS exploits the properties such as sparsity level of the
signal and incoherence of the measurement system.
Recently many sparse reconstruction algorithms have been
proposed in the literature for efficient sparse signal recon-
struction. Main works include Convex Relaxation Methods
(CRM) [5–7], greedy pursuits [8–11], and Bayesian frame-
work [12–15].

In many applications, partial information about the
non-zero locations and the non-zero values of the sparse
signal of interest may be available a priori. For example, in
signals such as video, the adjacent temporal frames will be
highly coherent and a partial knowledge about the
support-set of the current frame can be obtained from
the estimate of the previously reconstructed frames. In
such situations, it has been shown that a better sparsity-
measurement trade-off than conventional CRM can be
achieved by incorporating this knowledge in the CRM
framework [16–19]. This idea has also been extended
successfully for other methods to improve the sparsity-
measurement trade-off of the existing algorithms [20,21]

The seminal work by Candès et al. [22] showed that,
even in the absence of any a priori information, a re-
weighted strategy can improve the reconstruction perfor-
mance of CRM. This method was referred to as Iterative
Re-weighted L1 (IRL1). IRL1 exploits the information from
the estimated signal in the current iteration to improve the
signal reconstruction quality in the subsequent iteration
by selectively penalizing the atoms. Many variations of the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2014.09.023
0165-1684/& 2014 Published by Elsevier B.V.

n Corresponding author.
E-mail addresses: sooraj@ece.iisc.ernet.in (S.K. Ambat),

hari@ece.iisc.ernet.in (K.V.S. Hari).

Signal Processing ] (]]]]) ]]]–]]]

Please cite this article as: S.K. Ambat, K.V.S. Hari, An iterative framework for sparse signal reconstruction algorithms,
Signal Processing (2014), http://dx.doi.org/10.1016/j.sigpro.2014.09.023i

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
mailto:sooraj@ece.iisc.ernet.in
mailto:hari@ece.iisc.ernet.in
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
http://dx.doi.org/10.1016/j.sigpro.2014.09.023
http://dx.doi.org/10.1016/j.sigpro.2014.09.023


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

iterative re-weighted strategies have been proposed
recently [23–26]. Unfortunately, none of these iterative
strategies cannot be easily extended for an arbitrary Sparse
Reconstruction Algorithm (SRA). To the best of our knowl-
edge, there does not exist any general framework for
improving the performance of arbitrary SRA, iteratively.
In this paper, we propose a general iterative framework to
improve the performance of any arbitrary SRA, which we
referred to as Iterative Framework for Sparse Reconstruction
Algorithms (IFSRA). Similar to IRL1, IFSRA exploits the
information from the signal estimate in the current itera-
tion to get a better reconstruction quality in the subse-
quent iteration.

The organization of the paper is as follows. A brief
overview of CS is given in Section 2. In Section 3, we
develop the iterative framework and propose IFSRA. We
theoretically analyze IFSRA in Section 4 and derive suffi-
cient conditions for improving the signal reconstruction
quality. In Section 5, performance of IFSRA is validated
using numerical experiments. The notations used in this
paper are summarized below.

Notations: Bold upper case and bold lower case Roman
letters denote matrices and vectors respectively. Calli-
graphic letters and Upper case Greek alphabets are used
to denote sets. ‖ � ‖p denotes the pth-norm. AT denotes the
column sub-matrix of A formed by the columns of A listed
in the set T . xT denotes the sub-vector formed by the
elements of x whose indices are listed in the set T . ðxT 1 ÞT2

denotes the sub-vector formed by the elements of x whose
indices are listed in the set T 1 \ T 2. The best K-sparse
approximation to x is denoted by xK . Ties are broken
lexicographically. suppðxÞ denotes the set of indices of
non-zero elements in any vector x and suppðxK Þ denotes
the set of indices of the K largest entries in x. For any two
sets T 1 and T 2, T 1

Ä
aT 2≔T 1 \ T c

2 denotes the set differ-
ence. T c denotes the complement of the set T w.r.t. the set
f1;2;…;Ng. For a set T , jT j denotes its cardinality (size),
and for a scalar c, jcj denotes the magnitude of c. AT and A†

respectively denote the transpose and pseudo-inverse of
matrix A.

2. Background

Consider the standard CS measurement setup where a
K-sparse signal xARN�1 is measured via Mð5NÞ linear
measurements

b¼Axþw; ð1Þ

where AARM�N represents the measurement matrix,
bARM�1 represents the measurement vector, and
wARM�1 denotes the additive measurement noise.
Though (1) is an underdetermined system, CS theory
showed that stable and robust reconstruction of x is
possible if x is sufficiently sparse and A satisfies some
incoherence conditions [1,2]. For example, we can solve the
following convex optimization problem to get an estimate
of x:

min
x
γ JxJ1þ1

2 ‖Ax�b‖22; ð2Þ

where γ40 is a pre-fixed regularization parameter. The
optimization problem in (2) is widely known as Basis
Pursuit Denoising (BPDN) [7] which provides good numer-
ical results and elegant theoretical guarantees. In BPDN,
the ℓ1-term promotes sparsity in the solution whereas the
ℓ2-term ensures consistency in the solution.

In many applications, some partial knowledge about the
signal may be available a priori. It has been shown that a
weighted version of (2) often promotes sparsity better in
the solution and improves the reconstruction performance
in such cases [16–19,27,28]. The weighted ℓ1-norm mini-
mization form of (2) can be written as

min
x

∑
N

i ¼ 1
uijxijþ

1
2
‖Ax�b‖22; ð3Þ

where uiZ0 denotes the weight at index i. The partial
knowledge about the signal can be used for setting
different weights, which in turn selectively penalizes
different coefficients of the signal.

Even in the absence of such prior information, it has
been shown that an iterative re-weighting strategy can
result in a better sparsity-measurement trade-off than
BPDN. Iterative Re-weighted L1 (IRL1) [22] is one of the
early proposed methods in this direction which received
wide attention. In the first iteration, IRL1 sets all weights
to unity and solves (3). In other words, in the first iteration
IRL1 solves (2) (BPDN). Let x̂k denote the sparse signal
estimated by IRL1 in the kth iteration. In the (kþ1)th
iteration, IRL1 solves (3) with ui ¼ 1=ðx̂iþηÞ where η40 is
a pre-fixed parameter. The iteration continues till some
halting condition is reached. Though IRL1 shows signifi-
cant performance improvement over BPDN, in each itera-
tion IRL1 needs to solve a weighted BPDN and hence IRL1
is computationally much more demanding as compared to
BPDN. Many variations of IRL1 have been proposed in the
literature to improve the performance and reduce the
computational cost. For example, Iterative Support Detec-
tion (ISD) [23] uses only binary values (0 or 1) as weights.
In each iteration, ISD estimates the indices of the dominant
part of the signal known as active-set using thresholding or
by a more sophisticated first significant jump rule. The
atoms in the active-set are given weights equal to zero and
weights of the remaining atoms are set to unity to solve a
weighted BPDN in the subsequent iteration. ISD showed a
better performance than IRWL1 in both computation time
and reconstruction quality.

This idea of exploiting the partial knowledge about the
signal to improve the sparse reconstruction has been also
extended to other types of sparse reconstruction algorithms to
improve the sparsity-measurement trade-off [20,21]. How-
ever, to the best of our knowledge, iterative strategies similar
to IRL1 are not available for an arbitrary SRA. Next, we develop
a general framework which can be used to iteratively improve
the sparse reconstruction quality of any SRA.

3. Iterative framework for sparse signal reconstruction

Solving (1) may be viewed as three different tasks
related to the elements of x: (i) estimating the sparsity
level, (ii) identifying the indices of the non-zero elements,
and (iii) estimating the non-zero values. In this paper, we
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