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a b s t r a c t

This paper deals with the stabilization of switched systemswith respect to (w.r.t.) compact sets.We show
that the switched system is stabilizable w.r.t. a compact set bymeans of a family of switched signals if and
only if a certain control affine systemwhose admissible controls take values in a polytope is asymptotically
controllable to that set. In addition we present a control algorithm that based on a family of open-loop
controls which stabilizes the aforementioned control system, a model of the system and the states of the
switched system, generates switching signals which stabilize the switched system in a practical sense.
We also give results about the convergence and the robustness of the algorithm.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are a special class of hybrid systems and
have numerous applications in many fields (see Liberzon, 2003;
Liberzon & Morse, 1999; Matveev & Savkin, 2000; van der Schaft
& Schumacher, 2000). Mathematically, a switched system can be
described by a differential equation of the form

ẋ(t) = fσ(t)(x(t)), (1)

where F = {fi : Rn
→ Rn

: i = 1, . . . ,N} is a finite family
of sufficiently regular vector fields and where σ : [0, ∞) →

{1, . . . ,N} is the switching signal, i.e. σ is a piecewise constant and
continuous from the right function.

In Liberzon and Morse (1999), Lin and Antsaklis (2007) and
Shorten, Wirth, Mason, Wulff, and King (2007), some basic
problems related to stability issues are surveyed, among which we
note, in particular, the so-called stabilization problem, which we
roughly state as follows (Problem C in Liberzon & Morse, 1999):
Construct switching signals that make the origin an asymptotically
stable point of the switched system.

A popular approach to solve this problem, which we call the
closed-loop approach, basically consists in finding a state-dependent
switching rule k : Rn

→ {1, . . . ,N} such that with σ(t) = k(x(t)),
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the closed-loop system

ẋ(t) = fk(x(t))(x(t)) = g(x(t)) (2)

is globally asymptotically stable at x = 0. Since any such a map
k is necessarily discontinuous two problems arise: (i) the closed-
loop system (2) may not have classical solutions for some initial
conditions (a classical or Caratheodory solution of (2) is a locally
absolutely continuous function x : [0, T ) → Rn, such that ẋ(t) =

g(x(t)) for almost all t ∈ [0, T )); (ii) for some classical solutions
x(t) of (2), σ(t) = k(x(t)) may not necessarily be a switching
signal since, for example, σ could have a point of accumulation of
switchings times (Zeno behavior) or even a more complicated set
of discontinuities (see Ceragioli, 2006). Of course one can consider
generalized solutions of (2) (for instance Filippov or Krasovskii
ones) to overcome (i), but some of these generalized solutions x(t)
of (2) might not be a solution of (1) for any switching signal σ(t)
since they exhibit ‘chattering’.

The switching rule k is usually constructed with the help of
a Lyapunov function V (also called weak or control Lyapunov
function) or a family of them (see Bacciotti, 2004; Liberzon, 2003;
Lin & Antsaklis, 2007; Liu, Liu, & Xie, 2010 and the references
therein) and it is implemented by using some kind of hysteresis
in order to avoid both Zeno behavior and chattering. In this
regard, it is pertinent to note that the discontinuous feedback
stabilizers constructed for general nonlinear systems in Clarke,
Ledyaev, Rifford, and Stern (2000); Clarke, Ledyaev, Sontag, and
Subbotin (1997) and Kellet and Teel (2004) by using a control
Lyapunov function of the system (which always exists if the system
is asymptotically controllable, Clarke et al., 1997) semi-globally
stabilize the switched system in a practical sense when they are
implemented by means of sampling and zero-order hold. One of
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themain drawbacks of the closed-loop approach is that one usually
needs to find suitable Lyapunov functions for designing the state-
dependent stabilizing switching rule. Besides the fact that it is not
easy to find such functions, they may not belong to a ‘‘nice’’ class
of functions. For example, it was recently proven in Blanchini and
Savorgnan (2008) that some simple stabilizable planar switched
linear systems do not admit a convex Lyapunov function.

Motivated by the discussion above, this work considers an
alternative approach, which we call the open-loop approach, to
solve the stabilization problem. It basically consists in finding a
parameterized family of switching signals Σ = {σx0}x0∈Rn , such
that σx0 asymptotically drives the initial state x0 to the origin in a
suitable manner. This approach was less explored than the closed-
loop one, and only a few works followed it. Some results were
reported in Sun and Ge (2005) (see also the references therein) and
in Bacciotti and Mazzi (2012) for switched linear systems, and in
Bacciotti and Mazzi (2010) for switched nonlinear systems. One of
the main drawbacks of this approach is the lack of robustness of
the solutions so obtained,mainly due tomeasurement errors in the
initial conditions and modeling errors in the system dynamics. On
the other hand, it does not exhibit the well-posedness problems
mentioned for the closed-loop one and it is not necessary the
knowledge of Lyapunov functions for designing the stabilizer Σ .

In this paper we explore the open-loop approach for a more
general problem: the stabilization of a switched system w.r.t. a
compact set, (see Goebel, Sanfelice, & Teel, 2009 for a motivation
to stabilizationw.r.t. compact sets rather than a point). To this end,
in Section 2 we embed the switched system into a control affine
nonlinear one with controls taking values in a convex polytope,
and show that the problem can be solved for the switched system
if and only if it can be solved for the control system, which is
a better studied problem (see for instance Colonius & Kliemann,
2000, chapter 12) and, a priori, easier to solve due to the structure
of the control set. In Section 3 we present an algorithm that, based
on an open- or closed-loop solution of the stabilization problem
for the control system, generates switching signals that stabilize
the switching system in a practical sense. An interesting feature
of this algorithm is that it is robust with respect to small errors
in the measurements of the states and small uncertainties in the
vector fields fi. So, the implementation of an open-loop solution
Σ by this method precludes to a certain degree the drawback
mentioned above. The results in Sections 2 and 3 suggest an
alternative approach to the design of switching laws for stabilizing
a switching system w.r.t a compact set, that consists in (a) to
design a stabilizer for the control system (byusing the variouswell-
established design techniques) and (b) to obtain the stabilizing
switching signal via the proposed algorithm. In Section 4 we
illustrate the obtained results by means of an example and finally,
Section 5 contains some conclusions.

2. Open-loop stabilizability

In what follows we suppose that the vector fields of the family
F which gives rise to the switched system (1) are locally Lipschitz
and that A is a nonempty compact subset of Rn. For a subset B ⊂

Rn, we denote by |x|B the distance from x ∈ Rn to B, i.e. |x|B =

infb∈B |x − b|, where | · | is the Euclidean norm on Rn.
In order to study the stabilizability of (1) w.r.t. A ⊂ Rn, we

embed the switched system into the control system

ż(t) =

N
i=1

ui(t)fi(z(t)) := F(z(t))u(t) (3)

where F(z) = [f1(z) · · · fN(z)] ∈ Rn×N and for t ≥ 0, z(t) ∈ Rn and
u(t) ∈ U = co(U∗), with U∗

= {e1, . . . , eN}. Here ei ∈ RN denotes
the i-th canonical vector of RN and co(B) is the convex hull of a
subset B ⊂ RN .

We assume that the admissible controls of (3) belong to U, the
set of all the Lebesgue measurable functions u : [0, ∞) → U , and
denote by U∗

pc the subclass of all u ∈ U that take values in U∗ and
are piecewise constant and continuous from the right. For z0 ∈ RN

and u ∈ U, z(·, z0, u) will denote the unique maximally defined
solution of (3) which verifies z(0, z0, u) = z0.

By considering the bijective correspondence between the set of
switching signals of (1) and U∗

pc , σ → uσ with uσ (t) = eσ(t) for all
t ≥ 0, and taking into account that for each x0 ∈ Rn and each
switching signal σ , x(·) = z(·, x0, uσ ) is the unique maximally
defined solution of (1) corresponding toσ which verifies x(0) = x0,
we can identify the switched system (1) with the control system
(3) with admissible controls restricted toU∗

pc . This embeddingwas
used, for example, in Bengea and DeCarlo (2005) to solve optimal
control problems for switched systems.

In order to study the stabilization of (3) w.r.t. A by means of
controls in U∗

pc , we introduce the following.

Definition 1. Let U′ be a subclass of U. The control system (3)
is U′-stabilizable w.r.t. A if there exists a parameterized family
Σ = {uz0}z0∈RN\A of controls in U′ such that for some function
β ∈ KL2

|z(t, z0, uz0)|A ≤ β(|z0|A, t) ∀t ≥ 0, ∀z0 ∈ Rn
\ A. (4)

In addition, Σ will be referred to as a U′-stabilizer of (3).

Remark 2. At first glance, a seemingly more natural definition of
U′-stabilizability is obtained by asking for the existence of a family
of parameterized controls Σ = {uz0}z0∈Rn which verifies (4) for all
z0 ∈ Rn. Nevertheless, unless U′

= U (see Proposition 5), such
a definition is too restrictive. For example, the control system (3),
with n = 1, N = 2, f1(z) = −1, f2(z) = 1 and A = {0}, is U∗

pc-
stabilizable in the sense of Definition 1 but it is not if we adopt one
which requires that (4) holds also when z0 = 0, since there is no
control u ∈ U∗

pc such that |z(t, 0, u)| = β(0, t) = 0 for all t ≥ 0. In
connectionwith this, we note that Definition 1 allows us to face the
stabilization problem of a switched systemw.r.t. a point xe without
the (usual) assumption that fi(xe) = 0 for some i.

As for the fact that the controls are not defined for initial
conditions in A, in a practical situation the U′-stabilizer could be
applied as follows when z0 ∈ A: fix ε > 0. Pick any control v ∈ U′

and apply it while |z(t, z0, v)|A < ε. If t∗ is the first time such
that z(t∗, z0, v) = z1 verifies |z1|A = ε, then apply the control
u(t) = uz1(t−t∗) on the interval [t∗, ∞). In thiswaywe can obtain
the stabilization of (3) w.r.t an arbitrary neighborhood of A.

Remark 3. If k : Rn
→ U is a continuousmap such that the closed-

loop system

ż = F(z)k(z) (5)

is globally uniformly asymptotically stablew.r.t.A, the parameter-
ized family of controls Σ = {uz0}z0∈Rn\A, with uz0(·) := k(z(·)),
where z(·) is a solution of (5) which satisfies z(0) = z0, is a
U-stabilizer of (3).

Remark 4. With a proof similar to that of Proposition 2.3 in
Albertini and Sontag (1999), it follows that Σ = {uz0}z0∈RN\A is
an U′-stabilizer of (3) if and only if the following hold:
(1) For all z0 ∈ Rn

\ A, z(·, z0, uz0) is defined for all t ≥ 0;
(2) (Lyapunov stability) there exists a functionM of classK∞ such

that for every R > 0 and every z0 ∈ Rn
\ A with |z0|A ≤ R,

|z(t, z0, uz0)|A ≤ M(R) ∀t ≥ 0.

2 As usual, by a K∞-function we mean a continuous function α : R≥0 → R≥0
that is strictly increasing and unbounded, and satisfies α(0) = 0 and KL is the
set of functions R≥0 × R≥0 → R≥0 that are of class K∞ in the first argument and
decrease to 0 when the second argument goes to ∞.
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