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a b s t r a c t

In this paper, the limitation of using ðjωÞν as the ideal frequency response of fractional
order digital differentiators for non-bandlimited signals is discussed. High frequency error
enhanced by ðjωÞν, along with the cause of time domain response degradation, is
presented. Windows are proposed, which can help to improve the time domain response
of fractional order digital differentiator and greatly reduce the filter order if the
differentiator is approximated by finite impulse response (FIR) filter. Simulation results
show that windowing the output of fractional order digital differentiator in frequency
domain is effective in improving the time domain response of signals.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional order differentiation, which generalizes the
order of traditional derivation from integers to real and
complex values, has attracted the attentions of researchers
in physics and applied sciences in recent years. Engineer-
ing applications of fractional order differentiation may
be found in electromagnetism [1,2], automatic control
[3], circuits and systems [7], as well as digital signal
processing [4].

Compared with its integer counterpart, fractional order
differentiation offers more flexibility and better design
performance in both time domain and frequency domain
due to the introduction of fractional order. However, the
design procedure of fractional order differentiator is com-
plicated by the complex background of fractional calculus.
The state-of-the-art literature implements fractional order
operation in continuous and discrete time domains. For
continuous time case, the irrational transfer function
sν of fractional order differentiator is approximated by a

rational function

H sð Þ ¼∑M
k ¼ 0bks

k

∑N
k ¼ 0aks

k

using evaluation, interpolation and curve fitting techni-
ques. While for discrete time case, the z-domain transfer
function is obtained by first replacing s with its discrete
equivalent ωðz�1Þ using Euler method, Al-Alaoui method
and Tustin method, etc., and then by expanding ðωðz�1ÞÞν
using power series method and continued fraction
method. Detailed information on approximation of frac-
tional order operator can be found in [9–11].

Basically, there are two methods for realizations of
fractional order differentiator. One is digital realization
based on microprocessors and the other is analogue
realization using special circuits called the fractance. Frac-
tional order differentiator realized in microprocessors,
which may be called the fractional order digital differen-
tiator, can be more easily designed provided that the
processor meets memory and speed requirements. How-
ever, when non-bandlimited input signals are concerned,
fractional order digital differentiator suffers significant
frequency error, which is seldom discussed in the litera-
ture. According to uncertainty principle, a time limited
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signal has infinite frequency bandwidth. Besides, many
types of signals are both time unlimited and band unlim-
ited. To reconstruct a non-bandlimited signal from discrete
samples, signal spectrum is truncated with frequency
components above half of the Nyquist frequency removed,
which introduces error to the interpolated time domain
signal. Usually, such reconstruction error can be neglected
because the discarded frequency components contain
insignificant energy. This is not the case when discrete
signals are differentiated. As stated in [6,8,12], the ideal
frequency response of a digital differentiator is given by

H ωð Þ ¼ ðjωÞν; ωA � π

Ts
;
π

Ts

� �
ð1Þ

where Ts is the sampling interval. Eq. (1) shows that the
amplitude response of a fractional order digital differen-
tiator has an increasing profile. As a result, the high
frequency error of non-bandlimited input signals is
enhanced after differentiation. Effect of high frequency
error enhancement may be serious when ν is large or
input signals contain considerable high frequency energy.
To solve this problem, the frequency response of fractional
order digital differentiator can be modified, which is part
of the discussion in this paper.

On the other hand, the discrete time implementation of
fractional order differentiator is in the form of either finite
impulse response (FIR) or infinite impulse response (IIR).
The IIR implementation is preferred because

� The IIR form contains zeros and poles, which can better
approximate the frequency response of fractional order
differentiator.

� The order of FIR filter must be very high for good
approximation results, which makes the FIR form less
efficient in applications. As noted in [15], the filter
order should be assigned to 50.

In addition, the time domain response of fractional
order differentiator approximated by FIR filter suffers great
oscillation, which can be seen from the simulation results
in [12] and numerical results in this paper. However, it is
well known that FIR filter has no bound on the maximal
sampling rate [14] and is always automatically stable
because of nonrecursive structures [13]. Thus, if the order
of the FIR filter can be reduced and time domain response
can be improved, fractional order differentiator in FIR form
may achieve as good performance as IIR form does.
Finding better FIR filter approximation of fractional order

differentiator is the other part of the discussion in
this paper.

Following this introduction, this paper first gives some
fundamentals of fractional derivatives in Section 2. Then it
focuses on the discussion of frequency error associated
with fractional order digital differentiators and the selec-
tion of windows in Section 3. Simulation results are given
in Section 4. Section 5 concludes the paper with some
additional remarks.

2. Basics of fractional derivatives

Let us start with some basic concepts commonly used
in fractional order digital differentiators. The Grünwald–
Letnikov definition of fractional order differentiation for a
well-behaved function f(t) is given by [5]

aD
ν
t f ðtÞ ¼ lim

h-0
h�ν ∑

½ðt�aÞ=h�

k ¼ 0
ð�1Þk ν

k

� �
f ðt�khÞ ð2Þ

where ½�� represents the integer part, ν40 is the differ-
entiation order and ν

k

� �¼ ν ν�1ð Þ⋯ ν�kþ1ð Þ=k!.
Fractional derivative operator aD

ν
t is often written as Dν

when the differentiation limits a and t can be inferred
from context. Considering that Dν is linear and

f tð Þ ¼ 1
2π

Z 1

�1
F ωð Þejωt dω

where FðωÞ is the Fourier transform of f(t), the inverse
Fourier transform of Dνf ðtÞ can be derived as

Dνf tð Þ ¼Dν 1
2π

Z 1

�1
F ωð Þejωt dω

� �

¼ 1
2π

Z 1

�1
F ωð ÞDν ejωt

h i
dω

¼ 1
2π

Z 1

�1
ðjωÞνF ωð Þejωt dω ð3Þ

where relation Dνeat ¼ aνeat is used in Eq. (3).
For numerical evaluation, the limit operation in Eq. (2)

is neglected if h is small enough. In this situation, Dνf ðtÞ
can be approximated by

Dνf ðtÞ � Δν
hf ðtÞ ¼ h�ν ∑

½ðt�aÞ=h�

k ¼ 0
ð�1Þk ν

k

� �
f ðt�khÞ ð4Þ

As [15] reveals, Δν
hf ðtÞ gives a first-order approximation of

Dνf ðtÞ.

3. Problem formulation

3.1. Ideal response for fractional order digital differentiator

If a continuous signal x(t) is sampled with pulse train
δTs ðtÞ ¼∑1

k ¼ �1δðt�kTsÞ, the discrete form of x(t) can be
written as xðnÞ ¼ xðtÞjt ¼ nTs

. To obtain the digital fractional
order differentiation of x(n), a digital differentiator with
frequency specification Q νðwÞ, where ν is the fractional
order, should be designed. Fig. 1(top) illustrates the digi-
tization and differentiation process of x(t). The system
output is denoted by y1ðnÞ.

Operation in Fig. 1(top) can be viewed from another
perspective, which is shown in Fig. 1(bottom). In this case,
x(t) is first νth-order differentiated in continuous domain,

Fig. 1. Procedures for obtaining discrete differentiated signal. Top: signal
is first sampled and then digital differentiated. Bottom: signal is first
continuously differentiated and then sampled.
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