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a b s t r a c t

In many detection applications, the signal to be detected, referred to as target signal, is
not directly available. A reference channel (RC) is often deployed to collect a noise-
contaminated version of the target signal to serve as a reference, which is then used to
assist detecting the presence/absence of the target signal in a test channel (TC). A standard
approach is to cross-correlate (CC) the signals received in the TC and RC, respectively.
When the signal-to-noise ratio (SNR) in the RC is high, the CC behaves like the optimum
matched filter. However, when the SNR in the RC is low, the CC detector suffers significant
degradation. This paper considers the above detection problem with a noisy reference
signal. We propose four detectors based on the generalized likelihood ratio test principle,
by treating the unknown target signal to be deterministic or stochastic and under
conditions whether the noise variance is known or unknown. Our results demonstrate
that the noise in the RC has an impact on the achievable detection performance. However,
when the reference signal is noisy, three of the proposed detectors offer substantial
improvements in detection performance over the CC detector.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Detection of a signal in noise has been a topic of long-
standing interest in sensing and communications. If the
signal to be detected is perfectly known and the noise is
stationary with zero-mean and white power spectral
density, the optimal detector is the matched filter (MF)
which maximizes the output signal-to-noise ratio (SNR)
[1]. However, the signal may not be known in many
practical applications, such as underwater acoustics [2–5],
seismology [6–9], neurophysiology [10,11], and passive
radar [12–16]. Consider for example passive radar. Unlike

its active counterpart, a passive radar does not transmit a
known waveform and then listen for echos. Instead, it
utilizes commercial RF signals from TV stations or cellular
towers as sources to illuminate potential targets of interest.
The RF source waveforms are generally unknown to the
passive radar receiver.

A conventional approach to the unknown signal detec-
tion problem is to deploy a reference channel (RC) for
collecting the unknown transmitted signal to serve as a
reference. In passive radar, a reference signal can be
obtained by using a directive antenna pointing toward
the commercial RF source with a known location. Given
the availability of the reference signal, a natural solution is
to mimic the MF processing, i.e., cross-correlate (CC) the
reference and the test signal observed in a test channel
(TC). Nevertheless, the reference signal is inevitably con-
taminated by noise. Under the condition that the SNR in
the RC is high, the noise is negligible and the CC detector
behaves like the MF. However, the detection performance
of the CC detector would be significantly degraded, when
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the SNR in the RC is low. In such cases, improved detection
performance is possible, if the noise in the reference signal
is properly taken into account. In this paper, we consider
signal detection with a noisy reference.

Specifically, the detection problem in the presence of a
noisy reference signal can be formulated as the following
binary hypothesis test:

H0:
xr ¼ βsþv;
xt ¼w;

(
ð1aÞ

H1:
xr ¼ βsþv;
xt ¼ αsþw;

(
ð1bÞ

where xr and xt denote N � 1 vectors composed of com-
plex (baseband equivalent) samples received in the RC and
TC, respectively; s is an N � 1 vector containing samples of
the unknown transmitted signal waveform; α and β are
unknown scaling parameters accounting for the channel
propagation effects; w and v are noise vectors in the TC
and RC, respectively, which are modeled as independent
circular1 complex Gaussian vectors with zero mean and
covariance matrix ηIN , where η denotes the noise power
and IN stands for an N-dimensional identity matrix. The
problem of interest is to decide between hypotheses H1

and H0 given observations of xr and xt made over the RC
and TC channels.

We employ two models to describe the unknown trans-
mitted signal s, namely, a deterministic model where s is
deterministic but unknown, and a stochastic model inwhich s
is a complex Gaussian vector. The stochastic model is suitable
for signal sources involving multiplexing techniques, such as
the orthogonal frequency division multiplexing (OFDM) as
used in digital audio broadcasting [17], which use multiple
random information streams to form a composite commu-
nication signal that can be adequately modeled as a Gaussian
process due to the central limit theorem (CLT).

In this paper, we develop four generalized likelihood ratio
test (GLRT) detectors for bothmodels under the assumption of
known and unknown noise power. In particular, cyclic itera-
tion algorithms are proposed to obtain the maximum like-
lihood estimates (MLEs) of unknown parameters. Numerical
simulations are presented to illustrate the detection perfor-
mance of these proposed detectors. It is shown that the
proposed GLRT detectors, except the one developed under
the assumption of unknown noise power in the stochastic
model, outperforms the CC detector, especially when the
noise in the RC is not negligible.

A comment on the model in (1) for passive sensing is now
in order. In passive radar, since the target location is unknown,
there is an unknown delay of the waveform s observed at the
TC relative to that observed at the RC. In practical sensing
scenarios, the delay is within a known interval (i.e., the target
is located within a range specified by a minimum and a
maximum detection distance), which is discretized into a

number of small sub-intervals called range bins. The hypoth-
esis in (1) is tested on each bin one by one, whereby the RC
and TC observations are aligned according to the delay of the
tested range bin and detection is performed by using, e.g., any
detector discussed in this paper. Presumably, the test result
will be positive with a high probability only when the tested
range bin matches the true unknown delay. For simplicity
(and also as in the standard radar signal detection literature),
we assume that the delay alignment has already been
accomplished, and the observations in (1) have already been
delay compensated. Likewise, when detecting a moving
target, there is a Doppler uncertainty which can be handled
by discretizing the Doppler frequency into Doppler bins and
running the test on each Doppler bin one by one. It should be
noted that delay and Doppler uncertainties are present in
active radar as well, and they are often handled in a similar
manner there.

The remainder of the paper is organized as follows. In
Section 2, two GLRT-based detectors are devised under the
deterministic model. In Section 3, we design two GLRT-based
detectors under the stochastic model. In Section 4, comp-
uter simulations are offered. Finally, we provide concluding
remarks and possible future research tracks in Section 5.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters. Superscripts ð�ÞT , ð�Þn, and ð�Þ†
denote transpose, complex conjugate, and complex con-
jugate transpose, respectively. Ip stands for a p-dimen-
sional identity matrix. J � J is the Frobenius norm. j � j, ∠ð�Þ,
and Rð�Þ denote the modulus, the phase, and the real part
of a complex number, respectively. λmaxð�Þ and λminð�Þ
represent the largest eigenvalue and the smallest eigen-
value of an argument, respectively. detð�Þ denotes the
determinant operation. varð�Þ and Eð�Þ are the variance
and the statistical expectation, respectively. Prf�g denotes
the probability of a random variable.

2. Deterministic model based detectors

The Neyman–Pearson criterion is widely used for signal
detection, which enables us to obtain the maximum prob-
ability of detection while not allowing the probability of false
alarm to exceed a certain value [1]. According to the Neyman–
Pearson criterion, the optimum solution to the hypothesis
testing problem in (1) is obtained by comparing the ratio of
the likelihood of the received data under hypothesis over that
under hypothesis with an appropriate detection threshold, i.e.,

Λ xt ; xrð Þ ¼ f H1
ðxt ; xrÞ

f H0
ðxt ; xrÞ

≷
H1

H0

γ; ð2Þ

where f H0
ðxt ; xrÞ and f H1

ðxt ; xrÞ are the likelihood functions
under H0 and H1, respectively, and γ denotes the detection
threshold. Based on the Gaussian assumptions on v and w,
the probability density functions (PDFs) for deterministic s can
be written as

f H0
xt ; xrð Þ ¼ 1

π2Nη2N
exp �‖xr�βs‖2þ‖xt‖2

η

� �
; ð3Þ

and

f H1
xt ; xrð Þ ¼ 1

π2Nη2N
exp �‖xr�βs‖2þ‖xt�αs‖2

η

� �
; ð4Þ

1 A circular complex random variable indicates that its real part and
imaginary part are independent and identically distributed random
variables.
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