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a b s t r a c t

Many communication systems based on the synchronism of chaotic systems have been
proposed as an alternative spread spectrum modulation that improves the level of privacy
in data transmission. However, depending on the map and on the encoding function, the
transmitted signal may cease to be chaotic. Therefore, the sensitive dependence on initial
conditions, which is one of the most interesting properties for employing chaos in
telecommunications, may disappear. In this paper, we numerically analyze the chaotic
nature of signals modulated using a system that employs the Ikeda map. Additionally, we
propose changes in the communication system in order to guarantee that the modulated
signals are in fact chaotic.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Non-linear systems and chaos have been applied in all
areas of engineering [1]. This fact is particularly true when
it comes to Signal Processing and Telecommunications,
especially after the works by Pecora and Carroll [2] and Ott
et al. [3]. Chaos has appeared in different areas as digital
and analog modulation, cryptography, pseudorandom
sequences generation, watermarking, nonlinear adaptive
filters, phase-locked loop networks, among others (see e.g.,
[4–13]).

Three defining properties of chaotic signals are their
boundedness, aperiodicity and sensitive dependence on
initial conditions (SDIC) [14]. This last property means
that, if the generator system is initialized with a slightly
different initial condition, the obtained signal quickly

diverges from the original one. These three properties all
together are necessary for a signal to be called chaotic
and are the basis for the alleged advantages of using chaos
in communications, as an improvement in security [15].
However, in almost all chaos-based communication
schemes proposed in the literature, the facts that there is
a nonlinear system that, when isolated, generates chaotic
signals and that the transmitted signals are apparently
aperiodic are taken as sufficient evidence of chaos, without
further investigation. The SDIC is taken for granted. This is
partly due to the fact that when it comes to practical
applications, to verify the SDIC is not immediate.

As communication systems are always related to the
transmission of probabilistic aperiodic messages, it
becomes non-trivial and of paramount importance to
detect if the aperiodicity in the transmitted signals comes
from the nonlinearity of the transmitter or from the
message itself, in which case the chaos advantages are
not really present. This issue is particularly relevant when
the non-linear system employed presents a stable fixed
point besides the chaotic attractor. From one temporal
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series it is hard to visually distinguish a chaotic signal
stepping through the chaotic attractor and an orbit con-
verging to the fixed point but continuously perturbed. The
difference is only in terms of SDIC.

As an example, Fig. 1(a) shows the expected behavior of
chaotic signals. Two aperiodic orbits with very close initial
conditions are shown. After approximately 40 samples
they become apart in the state space, clearly presenting
SDIC. In contrast, the signals in Fig. 1(b) does not present
SDIC. Starting from different initial conditions, they start
to follow almost the same path after approximately
70 samples. Although bounded and aperiodic, the signals
in Fig. 1(b) are not chaotic.

The usual technique to evaluate the SDIC is via Lyapu-
nov Exponents (LE) [14]. The Lyapunov numbers are the
average per-step exponential divergence rate of nearby
points along an orbit, one for each direction, and the LE are
the natural logarithm of the Lyapunov numbers [14]. Given
a deterministic map, it is relatively straightforward to
numerically evaluate the LE of its orbits [14]. However,
when it comes to chaos-based communication systems
proposals where the message to be transmitted is fed back
in the chaotic signal generator (CSG) [16–19], complica-
tions may appear.

Bearing all these in mind, in this paper we analyze the
chaos-based communication system proposed in [19] in
order to verify if the transmitted signals are in fact chaotic.
Ref. [19] employed a particular codification scheme in
order to implement an efficient communication system
based on Ikeda map [14,20]. This map was considered in
[19] since it can be envisioned as arising from a string of
light pulses impinging on a partially transmitting mirror of
a ring cavity with a nonlinear dispersive medium, and
therefore, can be used to model a discrete-time low-pass
version of the optical communication scheme of [15].
However, caution must be taken, once that the Ikeda
map presents co-existing attractors with close basin of
attractions: a stable fixed point and a chaotic attractor [14].
This particular structure can possibly generate some draw-
backs for the conception of efficient chaos-based commu-
nication systems, presenting apparently aperiodicity with

lack of SDIC. Therefore, in this work, a more detailed
analysis concerning the presence and the consequences
of dealing with co-existing attractors is performed and
illustrated by a representative set of simulations. Further-
more, a strategy guided by the LE associated with such
attractors is adopted for suitably defining the amplitude of
the message in order to guarantee a truly chaos-based
system.

The paper is organized as follows. In Section 2, we
review the system used in [17–19] and Section 3 describes
the main properties of the Ikeda map. In Section 4, we
numerically analyze the transmitted signals of [19] and
propose changes in the system in order to guarantee that
the transmitted signals are truly chaotic. Finally, in Section 5,
we draft some conclusions.

2. Problem formulation

Wu and Chua's synchronization scheme proposed in
[16] is a simple way to use chaos for communication. They
addressed chaotic system synchronization differently from
Pecora and Carroll's seminal paper [2]. Instead of using
conditional LE to check the asymptotic stability of the slave
system and hence the possibility of synchronism, Wu and
Chua restated the master and slave equations in such a
way that it is easy to verify the convergence of the
synchronization error to zero. Based on this synchroniza-
tion scheme, a communication system was proposed in
[16] and a discrete-time version appeared later in [21].
In this section, we succinctly revise these ideas.

Consider two discrete-time systems defined by

xðnþ1Þ ¼AxðnÞþbþfðxiðnÞÞ ð1Þ

bxðnþ1Þ ¼AbxðnÞþbþfðxiðnÞÞ ð2Þ
where nAN represents time instants, xðnÞ and bxðnÞ are
real-valued column vectors of length K, i.e, xðnÞ ¼
x1ðnÞ x2ðnÞ … xK ðnÞ½ �T and bxðnÞ ¼ bx1ðnÞ bx2� ðnÞ … bxK ðnÞ�T , xi
and bxi represent states of the system with i¼1,…,K, and
ð�ÞT stands for transposition. A is a square matrix and b a
column vector, both constants, real-valued and of

Fig. 1. Examples of (a) chaotic and (b) non-chaotic signals concerning sensitive dependence on initial conditions. (a) Two aperiodic orbits with very close
initial conditions turning into different signals after some iterations. (b) Two signals starting with different initial conditions leading to the same orbit after
some iterations.
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